

Irish Standard I.S. EN IEC 60793-1-31:2019

Optical fibres - Part 1-31: Measurement methods and test procedures - Tensile strength

© CENELEC 2019 No copying without NSAI permission except as permitted by copyright law.

I.S. EN IEC 60793-1-31:2019

Incorporating amendments/corrigenda/National Annexes issued since publication:

The National Standards Authority of Ireland (NSAI) produces the following categories of formal documents:

I.S. xxx: Irish Standard — national specification based on the consensus of an expert panel and subject to public consultation.

S.R.~xxx: Standard~Recommendation-recommendation~based~on~the~consensus~of~an~expert~panel~and~subject~to~public~consultation.

SWiFT xxx: A rapidly developed recommendatory document based on the consensus of the participants of an NSAI workshop.

This document replaces/revises/consolidates the NSAI adoption of the document(s) indicated on the CEN/CENELEC cover/Foreword and the following National document(s):

NOTE: The date of any NSAI previous adoption may not match the date of its original CEN/CENELEC document.

This document is based on:

Published:

EN IEC 60793-1-31:2019

2019-04-05

This document was published under the authority of the NSAI and comes into effect on:

ICS number:

33.180.10

2019-04-23

NOTE: If blank see CEN/CENELEC cover page

Sales:

NSAI T +353 1 807 3800

1 Swift Square, F +353 1 807 3838

Northwood, Santry E standards@nsai.ie

Dublin 9 W NSAI.ie

T +353 1 857 6730 F +353 1 857 6729

W standards.ie

Údarás um Chaighdeáin Náisiúnta na hÉireann

This is a free page sample. Access the full version online.

National Foreword

I.S. EN IEC 60793-1-31:2019 is the adopted Irish version of the European Document EN IEC 60793-1-31:2019, Optical fibres - Part 1-31: Measurement methods and test procedures - Tensile strength

This document does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

For relationships with other publications refer to the NSAI web store.

Compliance with this document does not of itself confer immunity from legal obligations.

In line with international standards practice the decimal point is shown as a comma (,) throughout this document.

This is a free page sample. Access the full version online.

This page is intentionally left blank

This is a free page sample. Access the full version online. I.S. EN IEC 60793-1-31:2019

EUROPEAN STANDARD

EN IEC 60793-1-31

NORME EUROPÉENNE

EUROPÄISCHE NORM

April 2019

ICS 33.180.10

Supersedes EN 60793-1-31:2010

English Version

Optical fibres - Part 1-31: Measurement methods and test procedures - Tensile strength (IEC 60793-1-31:2019)

Fibres optiques - Partie 1-31: Méthodes de mesure et procédures d'essai - Résistance à la traction (IEC 60793-1-31:2019)

Lichtwellenleiter - Teil 1-31: Messmethoden und Prüfverfahren - Zugfestigkeit (IEC 60793-1-31:2019)

This European Standard was approved by CENELEC on 2019-03-13. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

EN IEC 60793-1-31:2019 (E)

European foreword

The text of document 86A/1908/FDIS, future edition 3 of IEC 60793-1-31, prepared by SC 86A "Fibres and cables" of IEC/TC 86 "Fibre optics" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN IEC 60793-1-31:2019.

The following dates are fixed:

- latest date by which the document has to be implemented at national level by publication of an identical national standard or by endorsement
- latest date by which the national standards conflicting with the document have to be withdrawn

This document supersedes EN 60793-1-31:2010.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights.

Endorsement notice

The text of the International Standard IEC 60793-1-31:2019 was approved by CENELEC as a European Standard without any modification.

In the official version, for Bibliography, the following notes have to be added for the standards indicated:

IEC 60793-1-21:2001	NOTE	Harmonized as EN 60793-1-21:2002 (not modified)
IEC 60793-2-10:2017	NOTE	Harmonized as EN 60793-2-10:2017 (not modified)
IEC 60793-2-20:2015	NOTE	Harmonized as EN 60793-2-20:2016 (not modified)
IEC 60793-2-30:2015	NOTE	Harmonized as EN 60793-2-30:2015 (not modified)
IEC 60793-2-40:2015	NOTE	Harmonized as EN 60793-2-40:2016 (not modified)
IEC 60793-2-50:2015	NOTE	Harmonized as EN 60793-2-50:2016 (not modified)
IEC 61649:2008	NOTE	Harmonized as EN 61649:2008 (not modified)

EN IEC 60793-1-31:2019 (E)

Annex ZA

(normative)

Normative references to international publications with their corresponding European publications

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE 1 Where an International Publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available here: www.cenelec.eu.

PublicationYearTitleEN/HDYearIEC 60793-1-20-Optical fibres - Part 1-20: Measurement methods and test procedures - Fibre geometryEN 60793-1-20 -

This is a free page sample. Access the full version online.

This page is intentionally left blank

IEC 60793-1-31

Edition 3.0 2019-02

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Optical fibres -

Part 1-31: Measurement methods and test procedures -Tensile strength

Fibres optiques -

Partie 1-31: Méthodes de mesure et procédures d'essai -Résistance à la traction

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2019 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.

IEC Central Office Tel.: +41 22 919 02 11

3, rue de Varembé info@iec.ch CH-1211 Geneva 20 www.iec.ch

Switzerland

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished

Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 000 terminological entries in English and French, with equivalent terms in 16 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

IEC Glossary - std.iec.ch/glossary

67 000 electrotechnical terminology entries in English and French extracted from the Terms and Definitions clause of IEC publications issued since 2002. Some entries have been collected from earlier publications of IEC TC 37, 77, 86 and CISPR.

A propos de l'IEC

La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications IEC

Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l'édition la plus récente, un corrigendum ou amendement peut avoir été publié.

Recherche de publications IEC - webstore.iec.ch/advsearchform

La recherche avancée permet de trouver des publications IEC en utilisant différents critères (numéro de référence, texte, comité d'études,...). Elle donne aussi des informations sur les projets et les publications remplacées ou retirées.

IEC Just Published - webstore.iec.ch/justpublished

Restez informé sur les nouvelles publications IEC. Just Published détaille les nouvelles publications parues. Disponible en ligne et une fois par mois par email.

Service Clients - webstore.iec.ch/csc

Si vous désirez nous donner des commentaires sur cette publication ou si vous avez des questions contactez-nous: sales@iec.ch.

Electropedia - www.electropedia.org

Le premier dictionnaire d'électrotechnologie en ligne au monde, avec plus de 22 000 articles terminologiques en anglais et en français, ainsi que les termes équivalents dans 16 langues additionnelles. Egalement appelé Vocabulaire Electrotechnique International (IEV) en ligne.

Glossaire IEC - std.iec.ch/glossary

67 000 entrées terminologiques électrotechniques, en anglais et en français, extraites des articles Termes et Définitions des publications IEC parues depuis 2002. Plus certaines entrées antérieures extraites des publications des CE 37, 77, 86 et CISPR de l'IEC.

IEC 60793-1-31

Edition 3.0 2019-02

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Optical fibres -

Part 1-31: Measurement methods and test procedures -Tensile strength

Fibres optiques -

Partie 1-31: Méthodes de mesure et procédures d'essai -Résistance à la traction

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

ICS 33.180.10 ISBN 978-2-8322-6529-1

Warning! Make sure that you obtained this publication from an authorized distributor.

Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

- 2 - IEC 60793-1-31:2019 © IEC 2019

CONTENTS

FC	REWC	RD	4
IN	TRODU	ICTION	6
1	Scop	e	7
2	Norm	native references	7
3	Term	s and definitions	7
4	Haza	rds	7
5	Appa	ratus	8
	5.1	General	8
	5.2	Gripping the fibre at both ends	
	5.3	Sample support	8
	5.4	Stretching the fibre	8
	5.5	Measuring the force at failure	9
	5.6	Environmental control equipment	
6	Sam	ole preparation	
	6.1	Definition	
	6.2	Sample size and gauge length	
	6.3	Auxiliary measurements	
_	6.4	Environment	
7		edure	
	7.1	Preliminary steps	
	7.2	Procedure for a single specimen	
8	7.3	Procedure for completing all samples for a given nominal strain rate	
0			
	8.1 8.2	Conversion of tensile load to failure stress Preparation of a Weibull plot	
	8.3	Computation of Weibull parameters	
9		Its	
0	9.1	Details to be reported	
	9.2	Details to be recorded	
10	-	ification information	
	•	informative) Typical testing apparatus of tensile strength under dynamic	
			16
Ar	inex B (informative) Guidelines on gripping the fibre	18
Ar	nex C	informative) Guidelines on stress rate	22
Bil	bliograp	bhy	24
	0 1		
Fid	aure 1 -	- Bimodal tensile strength Weibull plot for a 20 m gauge length test set-up at	
		train rate	10
Fig	gure A.	1 – Capstan design	16
Fiç	gure A.:	2 – Translation test apparatus	16
		3 – Rotating capstan apparatus	
		4 – Rotating capstan apparatus for long lengths	
	_	5 – Ganged rotating capstan tester	
	-	1 – Gradual slippage	
;	, a. o D.	. C.aaaa. c.ippago	

This is a free page sample. Access the full version online. I.S. EN IEC 60793-1-31:2019

IEC 60793-1-31:2019 © IEC 2019 - 3 -

Figure B.2 – Irregular slippage	18
Figure B.3 – Sawtooth slippage	19
Figure B.4 – Acceptable transfer function	19
Figure B.5 – Typical capstan	20
Figure B.6 – Isostatic compression	20
Figure B.7 – Escargot wrap	21
Figure C.1 – System to control stress rate	22
Figure C.2 – Time variation of load and loading speed	23

-4-

IEC 60793-1-31:2019 © IEC 2019

INTERNATIONAL ELECTROTECHNICAL COMMISSION

OPTICAL FIBRES -

Part 1-31: Measurement methods and test procedures – Tensile strength

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 60793-1-31 has been prepared by subcommittee 86A: Fibres and cables, of IEC technical committee 86: Fibre optics.

This third edition cancels and replaces the second edition published in 2010. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

a) correction of Formulae (3b) and (4b) and renumbering of formulae.

IEC 60793-1-31:2019 © IEC 2019

- 5 -

The text of this International Standard is based on the following documents:

FDIS	Report on voting	
86A/1908/FDIS	86A/1926/RVD	

Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts in the IEC 60793 series, published under the general title *Optical fibres*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

- 6 **-**

IEC 60793-1-31:2019 © IEC 2019

INTRODUCTION

Failure stress distributions can be used to predict fibre reliability in different conditions. IEC TR 62048 shows mathematically how this can be done. To complete a given reliability projection, the tests used to characterize a distribution are controlled for the following:

- population of fibre, for example coating, manufacturing period, diameter;
- gauge length, i.e. length of section that is tested;
- stress or strain rates;
- testing environment;
- · preconditioning or aging treatments;
- sample size.

This method measures the strength of optical fibre at a specified constant strain rate. It is a destructive test, and is not a substitute for proof-testing.

This method is used for those typical optical fibres for which the median fracture stress is greater than 3,1 GPa (450 kpsi¹) in 0,5 m gauge lengths at the highest specified strain rate of 25 %/min. For fibres with lower median fracture stress, the conditions herein have not demonstrated sufficient precision.

Typical testing is conducted on "short lengths", up to 1 m, or on "long lengths", from 10 m to 20 m with sample size ranging from 15 to 30.

The test environment and any preconditioning or aging are critical to the outcome of this test. There is no agreed upon model for extrapolating the results for one environment to another environment. For failure stress at a given stress or strain rate, however, as the relative humidity increases, failure stress decreases. Both increases and decreases in the measured strength distribution parameters have been observed as the result of preconditioning at elevated temperature and humidity for even a day or two.

This test is based on the theory of fracture mechanics of brittle materials and on the power-law description of flaw growth (see IEC TR 62048). Although other theories have been described elsewhere, the fracture mechanics based on power-law theory is the most generally accepted.

A typical population consists of fibre that has not been deliberately damaged or environmentally aged. A typical fibre has a nominal diameter of 125 mm, with a 250 mm or less diameter acrylate coating. Default conditions are given for such typical populations. Non-typical populations might include alternative coatings, environmentally aged fibre, or deliberately damaged or abraded fibre. Guidance for non-typical populations is also provided.

¹ kpsi = kilopounds per square inch.

IEC 60793-1-31:2019 © IEC 2019

-7-

OPTICAL FIBRES -

Part 1-31: Measurement methods and test procedures – Tensile strength

1 Scope

This part of IEC 60793 provides values of the tensile strength under dynamic loading of optical fibre samples. The method tests individual lengths of uncabled and unbundled glass optical fibre. Sections of fibre are broken with controlled increasing stress or strain that is uniform over the entire fibre length and cross section. The stress or strain is increased at a nominally constant rate until breakage occurs.

The distribution of the tensile strength values of a given fibre strongly depends on the sample length, loading velocity and environmental conditions. The test can be used for inspection where statistical data on fibre strength is required. Results are reported by means of statistical quality control distribution. Normally, the test is carried out after temperature and humidity conditioning of the sample. However, in some cases, it can be sufficient to measure the values at ambient temperature and humidity conditions.

This method is applicable to categories A1, A2, and A3, and classes B and C optical fibres.

The object of this document is to establish uniform requirements for the mechanical characteristic: tensile strength.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60793-1-20, Optical fibres – Part 1-20: Measurement methods and test procedures – Fibre geometry

3 Terms and definitions

No terms and definitions are listed in this document.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at http://www.electropedia.org/
- ISO Online browsing platform: available at http://www.iso.org/obp

4 Hazards

This test involves stretching sections of optical fibre until breakage occurs. Upon breakage, glass fragments can be distributed in the test area. Protective screens are recommended. Safety glasses shall be worn at all times in the testing area.

	This is a free preview.	Purchase the e	entire publication	at the link below:
--	-------------------------	----------------	--------------------	--------------------

Product Page

- Dooking for additional Standards? Visit Intertek Inform Infostore
- Dearn about LexConnect, All Jurisdictions, Standards referenced in Australian legislation