Irish Standard Recommendation S.R. CEN/TS 17390-3:2020 Molecular in vitro diagnostic examinations - Specifications for pre-examination processes for circulating tumor cells (CTCs) in venous whole blood - Part 3: Preparations for analytical CTC staining © CEN 2020 No copying without NSAI permission except as permitted by copyright law. ### S.R. CEN/TS 17390-3:2020 Incorporating amendments/corrigenda/National Annexes issued since publication: The National Standards Authority of Ireland (NSAI) produces the following categories of formal documents: I.S. xxx: Irish Standard — national specification based on the consensus of an expert panel and subject to public consultation. S.R.~xxx: Standard~Recommendation-recommendation~based~on~the~consensus~of~an~expert~panel~and~subject~to~public~consultation. SWiFT xxx: A rapidly developed recommendatory document based on the consensus of the participants of an NSAI workshop. This document replaces/revises/consolidates the NSAI adoption of the document(s) indicated on the CEN/CENELEC cover/Foreword and the following National document(s): NOTE: The date of any NSAI previous adoption may not match the date of its original CEN/CENELEC document. This document is based on: Published: CEN/TS 17390-3:2020 2020-01-22 This document was published under the authority of the NSAI and comes into effect on: ICS number: 11.100.10 2020-02-09 NOTE: If blank see CEN/CENELEC cover page NSAI T +353 1 807 3800 Sales: 1 Swift Square, F +353 1 807 3838 T +353 1 857 6730 Northwood, Santry E standards@nsai.ie F +353 1 857 6729 Dublin 9 W NSAI.ie W standards.ie Údarás um Chaighdeáin Náisiúnta na hÉireann This is a free page sample. Access the full version online. # National Foreword S.R. CEN/TS 17390-3:2020 is the adopted Irish version of the European Document CEN/TS 17390-3:2020, Molecular in vitro diagnostic examinations - Specifications for pre-examination processes for circulating tumor cells (CTCs) in venous whole blood - Part 3: Preparations for analytical CTC staining This document does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. For relationships with other publications refer to the NSAI web store. Compliance with this document does not of itself confer immunity from legal obligations. In line with international standards practice the decimal point is shown as a comma (,) throughout this document. This is a free page sample. Access the full version online. This page is intentionally left blank TECHNICAL SPECIFICATION SPÉCIFICATION TECHNIQUE TECHNISCHE SPEZIFIKATION **CEN/TS 17390-3** January 2020 ICS 11.100.10 # **English Version** # Molecular in vitro diagnostic examinations - Specifications for pre-examination processes for circulating tumor cells (CTCs) in venous whole blood - Part 3: Preparations for analytical CTC staining Analyses de diagnostic moléculaire in vitro -Spécifications relatives aux processus préanalytiques pour les cellules tumorales circulantes (CTC) du sang total veineux - Partie 3 : Préparations pour l'analyse par coloration des CTC Molekularanalytische in-vitro-diagnostische Verfahren - Spezifikationen für präanalytische Prozesse für zirkulierende Tumorzellen (CTC) in venösen Vollblutproben - Teil 3: Vorbereitungen für die analytische CTC-Färbung This Technical Specification (CEN/TS) was approved by CEN on 27 October 2019 for provisional application. The period of validity of this CEN/TS is limited initially to three years. After two years the members of CEN will be requested to submit their comments, particularly on the question whether the CEN/TS can be converted into a European Standard. CEN members are required to announce the existence of this CEN/TS in the same way as for an EN and to make the CEN/TS available promptly at national level in an appropriate form. It is permissible to keep conflicting national standards in force (in parallel to the CEN/TS) until the final decision about the possible conversion of the CEN/TS into an EN is reached. CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom. EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels | Contents | | Page | | |------------|--|------|--| | | European forewordIntroduction | | | | Intro | | | | | 1 | Scope | 5 | | | 2 | Normative references | 5 | | | 3 | Terms and definitions | 5 | | | 4 | General considerations | 9 | | | 5 | Outside the laboratory | 9 | | | 5.1 | Specimen collection | 9 | | | 5.2 | Transport requirements | 11 | | | 6 | Inside the laboratory | 12 | | | 6.1 | Specimen reception | 12 | | | 6.2 | Storage requirements for the venous whole blood specimen | 12 | | | 6.3 | Enrichment of the CTCs | | | | 6.4 | Storage of enriched CTCs | | | | 6.5 | Preparation for CTC staining | | | | Anno | ex A (informative) Decision guideline for critical steps of the CTC pre-analytical | | | | | workflow for staining | 16 | | | Bibli | Bibliography | | | # **European foreword** This document (CEN/TS 17390-3:2020) has been prepared by Technical Committee CEN/TC 140 "In vitro diagnostic medical devices", the secretariat of which is held by DIN. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN shall not be held responsible for identifying any or all such patent rights. CEN/TS 17390 consists of the following parts, under the general title *Molecular in vitro diagnostic examinations* — *Specifications for pre-examination processes for Circulating Tumor Cells (CTCs) in venous whole blood*: - Part 1: Isolated RNA - Part 2: Isolated DNA - Part 3: Preparations for analytical CTC staining According to the CEN/CENELEC Internal Regulations, the national standards organisations of the following countries are bound to announce this Technical Specification: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom. # Introduction Solid tumours release cells and bioanalytes into blood and other body fluids. This has opened the option of minimally-invasive tumour detection, diagnosis and characterization from venous whole blood (liquid biopsies). Liquid biopsies are expected to enable earlier detection and diagnosis of cancers and advance personalized patient treatment. These applications have become one of the fastest growing segments of the entire diagnostic market. Circulating tumour cells (CTCs) in venous whole blood reflect the disease complexity that evolves during tumour progression, with distinct genetic, epigenetic and expression features. Besides the prognostic role of CTC identification and/or enumeration in cancer progression, CTC identification and analysis can improve e.g. disease outcome prediction, therapeutic guidance and post-treatment monitoring of the patient. CTCs are now considered as a surrogate sample of tumour tissue, both in cancer early development and metastatic phase. Molecular characterization of CTCs can provide for example a strategy for monitoring cancer genotypes during systemic therapies [1], identification of mechanisms of disease progression, identification of novel targets for treatment [2] and to select targeted therapies. Moreover, CTC single-cell sequencing is emerging as an important tool for tumour genomic heterogeneity analysis [3] [4] [5]. CTCs are fragile and tend to degrade within a few hours when collected in conventional blood collection tubes, e.g. EDTA containing tubes, without dedicated CTC stabilizers. CTCs are extremely rare, especially in early disease, e.g. less than 10 cells per 10 ml of blood, representing a ratio of approx. 1:10⁷ CTCs to white blood cells (WBCs). This low ratio represents a significant challenge to CTC enrichment required for identification and examination as tumour-derived cells. Furthermore, CTC morphology and biomolecules can change during the pre-examination process. These can lead to changes in protein quantity, integrity, modification, conformation and localization within the cell. This can impact the validity and reliability of the examination result. CTC examination usually requires a CTC enrichment step (e.g. based on biological properties, such as expression of surface molecules, or physical properties, such as size and density, of the CTCs or their combination) prior to cytomorphological examination or immunofluorescent staining. CTC enrichment technologies can provide CTCs attached on a solid surface, ready for cytological examination, or CTCs in suspension requiring extra processing steps prior to the examination. This can lead to potential cell loss. [6] CTC enrichment is usually followed by their identification by conventional cytochemical or proteintargeted staining procedures that allow detection of the cell traits. Standardization of all steps of the pre-examination process is required. This includes blood collection and stabilization, transport, storage, CTC enrichment, and CTC isolation (if required). A decision guideline for the critical steps of the pre-analytical workflow for CTC staining is provided in Annex A. This document describes measures to standardize the pre-examination process to obtain appropriate CTC staining. In this document, the following verbal forms are used: - "shall" indicates a requirement; - "should" indicates a recommendation; - "may" indicates a permission; - "can" indicates a possibility or a capability. # 1 Scope This document specifies guidelines on the handling, storage, processing and documentation of human venous whole blood specimens intended for staining of circulating tumour cells (CTCs) during the pre-examination phase before a molecular examination is performed. This document is applicable to molecular *in vitro* diagnostic examinations including laboratory developed tests performed by medical laboratories. It is also intended to be used by laboratory customers, *in vitro* diagnostics developers and manufacturers, biobanks, institutions and commercial organizations performing biomedical research, and regulatory authorities. This document does not cover pre-analytical workflow requirements for viable CTC cryopreservation and culturing. NOTE 1 The requirements given in this document can also be applied to other circulating rare cells (e.g. fetal cells). NOTE 2 International, national or regional regulations or requirements can also apply to specific topics covered in this document. # 2 Normative references The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. EN ISO 15189:2012, Medical laboratories - Requirements for quality and competence (ISO 15189:2012, Corrected version 2014-08-15) ISO 15190, Medical laboratories — Requirements for safety # 3 Terms and definitions For the purposes of this document, the following terms and definitions apply. ISO and IEC maintain terminological databases for use in standardization at the following addresses: - IEC Electropedia: available at http://www.electropedia.org/ - ISO Online browsing platform: available at https://www.iso.org/obp # 3.1 ### aliquot portion of a larger amount of homogenous material, assumed to be taken with negligible sampling error Note 1 to entry: The term is usually applied to fluids. Tissues are heterogeneous and therefore cannot be aliquoted. Note 2 to entry: The definition is derived from bibliographical references [7], [8] and [9]. [SOURCE: EN ISO 20166-3:2019, 3.1] # 3.2 # ambient temperature unregulated temperature of the surrounding air [SOURCE: EN ISO 20166-3:2019, 3.2] | This is a free preview | Purchase the entire | e publication at the link below: | |------------------------|---|----------------------------------| |------------------------|---|----------------------------------| **Product Page** - Dooking for additional Standards? Visit Intertek Inform Infostore - Dearn about LexConnect, All Jurisdictions, Standards referenced in Australian legislation