

Irish Standard I.S. EN IEC 62282-8:2020

Fuel cell technologies - Part 8-102: Energy storage systems using fuel cell modules in reverse mode - Test procedures for the performance of single cells and stacks with proton exchange membranes, including reversible operation

© CENELEC 2020 No copying without NSAI permission except as permitted by copyright law.

I.S. EN IEC 62282-8:2020

Incorporating amendments/corrigenda/National Annexes issued since publication:

The National Standards Authority of Ireland (NSAI) produces the following categories of formal documents:

I.S. xxx: Irish Standard — national specification based on the consensus of an expert panel and subject to public consultation.

S.R.~xxx: Standard~Recommendation-recommendation~based~on~the~consensus~of~an~expert~panel~and~subject~to~public~consultation.

SWiFT xxx: A rapidly developed recommendatory document based on the consensus of the participants of an NSAI workshop.

This document replaces/revises/consolidates the NSAI adoption of the document(s) indicated on the CEN/CENELEC cover/Foreword and the following National document(s):

NOTE: The date of any NSAI previous adoption may not match the date of its original CEN/CENELEC document.

This document is based on:

Published:

EN IEC 62282-8:2020

2020-03-06

This document was published under the authority of the NSAI and comes into effect on:

ICS number:

2020-03-26

NOTE: If blank see CEN/CENELEC cover page

NSAI T +353 1 807 3800 Sales:

 1 Swift Square,
 F +353 1 807 3838
 T +353 1 857 6730

 Northwood, Santry
 E standards@nsai.ie
 F +353 1 857 6729

 Dublin 9
 W NSAI.ie
 W standards.ie

Údarás um Chaighdeáin Náisiúnta na hÉireann

This is a free page sample. Access the full version online.

National Foreword

I.S. EN IEC 62282-8:2020 is the adopted Irish version of the European Document EN IEC 62282-8:2020, Fuel cell technologies - Part 8-102: Energy storage systems using fuel cell modules in reverse mode - Test procedures for the performance of single cells and stacks with proton exchange membranes, including reversible operation

This document does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

For relationships with other publications refer to the NSAI web store.

Compliance with this document does not of itself confer immunity from legal obligations.

In line with international standards practice the decimal point is shown as a comma (,) throughout this document.

This is a free page sample. Access the full version online.

This page is intentionally left blank

EUROPEAN STANDARD

EN IEC 62282-8-102

NORME EUROPÉENNE

EUROPÄISCHE NORM

March 2020

ICS 27.070

English Version

Fuel cell technologies - Part 8-102: Energy storage systems using fuel cell modules in reverse mode - Test procedures for the performance of single cells and stacks with proton exchange membranes, including reversible operation (IEC 62282-8-102:2019)

Technologies des piles à combustible - Partie 8-102: Systèmes de stockage de l'énergie utilisant des modules à piles à combustible en mode inversé - Procédures d'essai pour la performance des cellules élémentaires et des piles à membrane échangeuse de protons, comprenant le fonctionnement réversible (IEC 62282-8-102:2019) Brennstoffzellentechnologien - Teil 8-102:
Energiespeichersysteme mit Brennstoffzellenmodulen im
Umkehrbetrieb - Prüfverfahren zum Leistungsverhalten von
Einzelzellen und Stacks mit Protonen-Austausch-Membran
einschließlich Umkehrbetrieb
(IEC 62282-8-102:2019)

This European Standard was approved by CENELEC on 2020-01-17. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

EN IEC 62282-8-102:2020 (E)

European foreword

The text of document 105/763/FDIS, future edition 1 of IEC 62282-8-102, prepared by IEC/TC 105 "Fuel cell technologies" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN IEC 62282-8-102:2020.

The following dates are fixed:

- latest date by which the document has to be implemented at national (dop) 2020-10-17 level by publication of an identical national standard or by endorsement
- latest date by which the national standards conflicting with the document have to be withdrawn (dow) 2023-01-17

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights.

Endorsement notice

The text of the International Standard IEC 62282-8-102:2019 was approved by CENELEC as a European Standard without any modification.

In the official version, for Bibliography, the following notes have to be added for the standards indicated:

IEC 62282-8-101 NOTE Harmonized as EN IEC 62282-8-1011

IEC 62282-8-201 NOTE Harmonized as EN IEC 62282-8-2012

_

¹ To be published. Stage at the time of publication: FprEN IEC 62282-8-101:2019.

² To be published. Stage at the time of publication: FprEN IEC 62282-8-201:2019.

EN IEC 62282-8-102:2020 (E)

Annex ZA

(normative)

Normative references to international publications with their corresponding European publications

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE 1 Where an International Publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available here: www.cenelec.eu.

<u>Publication</u>	<u>Year</u>	<u>Title</u>	EN/HD	<u>Year</u>
IEC 60050-485	2020	International Electrotechnical Vocabulary - Part 485: Fuel cell technologies	-	-
IEC/TS 62282-7-1	2017	Fuel cell technologies - Part 7-1: Test methods - Single cell performance tests for polymer electrolyte fuel cells (PEMFC)	-	-

This is a free page sample. Access the full version online.

This page is intentionally left blank

IEC 62282-8-102

Edition 1.0 2019-12

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Fuel cell technologies -

Part 8-102: Energy storage systems using fuel cell modules in reverse mode – Test procedures for the performance of single cells and stacks with proton exchange membranes, including reversible operation

Technologies des piles a combustible -

Partie 8-102: Systèmes de stockage de l'énergie utilisant des modules à piles à combustible en mode inversé – Procédures d'essai pour la performance des cellules élémentaires et des piles à membrane échangeuse de protons, comprenant le fonctionnement réversible

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2019 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.

IEC Central Office Tel.: +41 22 919 02 11

3, rue de Varembé info@iec.ch CH-1211 Geneva 20 www.iec.ch

Switzerland

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished

Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 000 terminological entries in English and French, with equivalent terms in 16 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

IEC Glossary - std.iec.ch/glossary

67 000 electrotechnical terminology entries in English and French extracted from the Terms and Definitions clause of IEC publications issued since 2002. Some entries have been collected from earlier publications of IEC TC 37, 77, 86 and CISPR.

A propos de l'IEC

La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications IEC

Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l'édition la plus récente, un corrigendum ou amendement peut avoir été publié.

Recherche de publications IEC webstore.iec.ch/advsearchform

La recherche avancée permet de trouver des publications IEC en utilisant différents critères (numéro de référence, texte, comité d'études,...). Elle donne aussi des informations sur les projets et les publications remplacées ou retirées.

IEC Just Published - webstore.iec.ch/justpublished

Restez informé sur les nouvelles publications IEC. Just Published détaille les nouvelles publications parues. Disponible en ligne et une fois par mois par email.

Service Clients - webstore.iec.ch/csc

Si vous désirez nous donner des commentaires sur cette publication ou si vous avez des questions contactez-nous: sales@iec.ch.

Electropedia - www.electropedia.org

Le premier dictionnaire d'électrotechnologie en ligne au monde, avec plus de 22 000 articles terminologiques en anglais et en français, ainsi que les termes équivalents dans 16 langues additionnelles. Egalement appelé Vocabulaire Electrotechnique International (IEV) en ligne.

Glossaire IEC - std.iec.ch/glossary

67 000 entrées terminologiques électrotechniques, en anglais et en français, extraites des articles Termes et Définitions des publications IEC parues depuis 2002. Plus certaines entrées antérieures extraites des publications des CE 37, 77, 86 et CISPR de l'IEC.

IEC 62282-8-102

Edition 1.0 2019-12

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Fuel cell technologies -

Part 8-102: Energy storage systems using fuel cell modules in reverse mode – Test procedures for the performance of single cells and stacks with proton exchange membranes, including reversible operation

Technologies des piles a combustible -

Partie 8-102: Systèmes de stockage de l'énergie utilisant des modules à piles à combustible en mode inversé – Procédures d'essai pour la performance des cellules élémentaires et des piles à membrane échangeuse de protons, comprenant le fonctionnement réversible

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

ICS 27.070 ISBN 978-2-8322-7675-4

Warning! Make sure that you obtained this publication from an authorized distributor. Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

- 2 - IEC 62282-8-102:2019 © IEC 2019

CONTENTS

F	DREWC	PRD	5
ΙN	TRODU	JCTION	7
1	Scop	re	8
2	Norn	native references	8
3	Term	ns, definitions and symbols	8
	3.1	Terms and definitions	
	3.2	Symbols	
	3.3	Standard temperature and pressure (STP) values for gas temperature and	
	0.0	pressure	15
4	Gene	eral safety considerations	15
5	Test	environment	16
	5.1	General	16
	5.2	Reversible PEM cell/stack assembly unit	17
	5.3	Separated reversible PEM cell/stack assembly unit	
	5.4	Experimental set-up	
	5.4.1	General	17
	5.4.2	Fluid flow control equipment	18
	5.4.3	Load/power control equipment	18
	5.4.4	Measurement and data acquisition equipment	18
	5.4.5	Safety equipment	19
	5.4.6	Mechanical load control equipment	19
	5.4.7	Heat management equipment	19
	5.4.8	Gas pressure control equipment	19
	5.4.9	Test system control equipment	19
	5.5	Parameter control and measurement	
	5.6	Measurement methods of TIPs and TOPs and control accuracy	20
6	Meas	surement instruments and measurement methods	20
	6.1	Instrument uncertainty	20
	6.2	Recommended measurement instruments and methods	
	6.2.1		
	6.2.2	Voltage	21
	6.2.3	Current	21
	6.2.4	Internal resistance (IR)	21
	6.2.5	ŭ	
	6.2.6	5 1	
	6.2.7	•	
	6.2.8		
	6.2.9	ě ,	
	6.2.1		
	6.3	Reference test conditions and manufacturer recommendations	
	6.3.1	•	
	6.3.2	3	
	6.3.3	,	
7	6.4	Data acquisition method	
7		procedures and computation of results	
	7.1	General	25

IEC 62282-8-102:2019 © IEC 2019 - 3 -

7.2	Current-voltage (I-V) characteristics test	. 25
7.2	.1 Objective	. 25
7.2	.2 Test method	. 25
7.2	.3 Data post-processing	. 25
7.3	Steady-state test	. 26
7.3	.1 Objective	. 26
7.3	.2 Test methods	. 26
7.3	.3 Data post-processing	. 26
7.4	Durability test	. 26
7.4	.1 Objective	. 26
7.4	.2 Test method	. 26
7.4	.3 Data post-processing	. 26
7.5	Internal resistance (IR) measurement	
7.5	.1 Objective	. 27
7.5	.2 Test methods	. 27
7.5	.3 Data post processing	. 28
7.6	Current cycling durability test	
7.6	•	
7.6		
7.6		
7.7	Pressurized test	
7.7	•	
7.7		
7.7		
8 Tes	st report	
8.1	General	
8.2	Report items	. 29
8.3	Test unit data description	
8.4	Test condition description	
8.5	Test data description	
8.6	Uncertainty evaluation	
Annex A	(normative) Test procedure guidelines	.31
A.1	Test objective	. 31
A.2	Test set-up	. 31
A.3	Current-voltage characteristics test (7.2)	
A.3	, ,	
A.3		
A.3	•	
A.4	Steady-state test (7.3)	
A.4		
A.4		
A.4	•	
A.5	Durability test (7.4)	
A.5	, ,	
A.5		
A.5	•	
A.5	,	
A.6	Current cycling durability test	
Δ 6	1 Test innut narameters (TIPs)	37

- 4 - IEC 62282-8-102:2019 © IEC 2019

A.6.2	Test output parameters (TOPs)	
A.6.3	Derived quantities	
A.6.4	Measurement of current cycling durability	
	essurized test	
A.7.1 A.7.2	Test input parameters (TIPs) Test output parameters (TOPs)	
A.7.2 A.7.3	Derived quantities	
A.7.3 A.7.4	Measurement of pressurized test	
	rmative) Formulary	
-		
Figure 1 – S	chematic representation of a reversible PEM cell/stack assembly unit	17
Figure 2 – S	chematic representation of a separate reversible PEM cell/stack assembly	unit . 17
Figure 3 – S	chematic graph of a test environment for a PEM cell/stack assembly unit	18
Figure 4 – S	chematic diagram of PEM cell impedance	22
Table 1 – Sy	mbols	14
Table 2 – Ins	strument uncertainty for each quantity to be measured	20
Table A.1 –	Test input parameters (TIPs) for current-voltage characteristics test	32
Table A.2 –	Test output parameters (TOPs) for current-voltage characteristics test	32
Table A.3 –	Derived quantities for current-voltage characteristics test	33
Table A.4 –	Test input parameters (TIPs) for steady state test	33
Table A.5 –	Test output parameters (TOPs) for steady state test	34
	Derived quantities for steady state test	
	Test input parameters (TIPs) for durability test	
	Test output parameters (TOPs) for durability test	
	Derived quantities for constant load durability test	
	Test input parameters (TIPs) for current cycling durability test within a	
single opera	ting mode (fuel cell or electrolysis)	37
	Test input parameters (TIPs) for current cycling durability test covering modes (fuel cell and electrolysis)	37
•	· Test output parameters (TOPs) for current cycling durability test	
	Derived quantities for current cycling durability test	
	· Test input parameters (TIPs) for pressurized testing	
	· Test output parameters (TOPs) for pressurized testing	
	Derived quantities for pressurized test	

IEC 62282-8-102:2019 © IEC 2019

- 5 -

INTERNATIONAL ELECTROTECHNICAL COMMISSION

FUEL CELL TECHNOLOGIES -

Part 8-102: Energy storage systems using fuel cell modules in reverse mode – Test procedures for the performance of single cells and stacks with proton exchange membranes, including reversible operation

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62282-8-102 has been prepared by IEC technical committee 105: Fuel cell technologies.

The text of this International Standard is based on the following documents:

FDIS	Report on voting
105/763/FDIS	105/776/RVD

Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

- 6 - IEC 62282-8-102:2019 © IEC 2019

A list of all parts in the IEC 62282 series, published under the general title *Fuel cell technologies*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

IEC 62282-8-102:2019 © IEC 2019

-7 -

INTRODUCTION

This part of IEC 62282 describes test methods for a single cell and stack (denoted as "cell/stack" hereafter) that are intended for use in energy storage systems that use proton exchange membrane fuel cells (PEMFC) in combination with proton exchange membrane water electrolysers (PEMWE), or directly using proton exchange membrane cells (Re-PEM).

This document is intended to be used for data exchanges in commercial transactions between cell/stack manufacturers and system developers or for acquiring data on a cell or stack in order to estimate the performance of a system based on it. Users of this document can selectively execute test items suitable for their purposes from those described in this document.

PEMFCs, PEMWEs and Re-PEMs have a broad range of geometry and size. As such, in general, peripherals like current collectors and gas manifolds are unique to each cell or stack and are often incorporated into a cell or stack to form one integrated unit. In addition, they tend to have a significant effect on the power generation characteristics of the cell or stack. This document therefore introduces as its subject "cell/stack assembly unit", which are defined as those units containing not only a cell or a stack, but also peripherals.

IEC 62282-8 (all parts) aims to develop performance test methods for power storage and buffering systems based on electrochemical modules (combining electrolysis and fuel cells, in particular reversible fuel cells), taking into consideration both options of re-electrification and substance (and heat) production for sustainable integration of renewable energy sources.

Under the general title *Energy storage systems using fuel cell modules in reverse mode*, the IEC 62282-8 series consists of the following parts:

- IEC 62282-8-101: Test procedures for the performance of solid oxide single cells and stacks, including reversible operation
- IEC 62282-8-102: Test procedures for the performance of single cells and stacks with proton exchange membranes, including reversible operation
- IEC 62282-8-103 ¹: Alkaline single cell and stack performance including reversible operation
- IEC 62282-8-201: Test procedures for the performance of power-to-power systems
- IEC 62282-8-202²: Power-to-power systems Safety
- IEC 62282-8-300 (all parts)³: Power-to-substance systems

As a priority dictated by the emerging needs for industry and opportunities for technological development, IEC 62282-8-101, IEC 62282-8-102 and IEC 62282-8-201 have been initiated jointly and as a priority. These parts are presented as a package to highlight the need for an integrated approach as regards the system application (i.e. a solution for energy storage) and its fundamental constituent components (i.e. fuel cells operated in reverse or reversing mode).

IEC 62282-8-103, IEC 62282-8-202 and IEC 62282-8-300 (all parts) are suggested but are left for initiation at a later stage.

¹ Under consideration.

² Under consideration.

³ Under consideration.

- 8 - IEC 62282-8-102:2019 © IEC 2019

FUEL CELL TECHNOLOGIES -

Part 8-102: Energy storage systems using fuel cell modules in reverse mode – Test procedures for the performance of single cells and stacks with proton exchange membranes, including reversible operation

1 Scope

This part of IEC 62282 deals with PEM cell/stack assembly units, testing systems, instruments and measuring methods, and test methods to test the performance of PEM cells and stacks in fuel cell mode, electrolysis and/or reversible mode.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60050-485:— ⁴ , International Electrotechnical Vocabulary – Part 485: Fuel cell technologies

IEC TS 62282-7-1:2017, Fuel cell technologies – Part 7-1: Test methods – Single cell performance tests for polymer electrolyte fuel cells (PEMFC)

3 Terms, definitions and symbols

3.1 Terms and definitions

For the purposes of this document, the terms and definitions given in IEC 60050-485 and the following apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at http://www.electropedia.org/
- ISO Online browsing platform: available at http://www.iso.org/obp

3.1.1

active electrode area

geometric area of the electrode perpendicular to the direction of the current flow

Note 1 to entry: Usually this corresponds to the smaller of the two areas of negative electrode or positive electrode.

[SOURCE: IEC 60050-485:—, 485-02-08, modified — "electrode" added to the term, the term "effective area" has been deleted, and the notes to entry have been replaced with a new note to entry.]

⁴ Under preparation. Stage at the time of preparation: IEC FDIS 60050-485:2019.

The is a new provider i arenade and chare publication at the limit below	This is a free preview.	Purchase the	entire publication	at the link below:
--	-------------------------	--------------	--------------------	--------------------

Product Page

- Dooking for additional Standards? Visit Intertek Inform Infostore
- Dearn about LexConnect, All Jurisdictions, Standards referenced in Australian legislation