Irish Standard I.S. EN IEC 61803:2020 Determination of power losses in highvoltage direct current (HVDC) converter stations with line-commutated converters © CENELEC 2021 No copying without NSAI permission except as permitted by copyright law. #### I.S. EN IEC 61803:2020 Incorporating amendments/corrigenda/National Annexes issued since publication: The National Standards Authority of Ireland (NSAI) produces the following categories of formal documents: I.S. xxx: Irish Standard — national specification based on the consensus of an expert panel and subject to public consultation. S.R.~xxx: Standard~Recommendation-recommendation~based~on~the~consensus~of~an~expert~panel~and~subject~to~public~consultation. SWiFT xxx: A rapidly developed recommendatory document based on the consensus of the participants of an NSAI workshop. This document replaces/revises/consolidates the NSAI adoption of the document(s) indicated on the CEN/CENELEC cover/Foreword and the following National document(s): NOTE: The date of any NSAI previous adoption may not match the date of its original CEN/CENELEC document. This document is based on: Published: EN IEC 61803:2020 2020-12-04 This document was published under the authority of the NSAI and comes into effect on: ICS number: 29.200 2021-01-14 Northwood, Santry NOTE: If blank see CEN/CENELEC cover page Sales: NSAI T +353 1 807 3800 1 Swift Square, F +353 1 807 3838 E standards@nsai.ie T +353 1 857 6730 F +353 1 857 6729 Dublin 9 W NSAI.ie NSAI.ie W standards.ie Údarás um Chaighdeáin Náisiúnta na hÉireann This is a free page sample. Access the full version online. #### National Foreword I.S. EN IEC 61803:2020 is the adopted Irish version of the European Document EN IEC 61803:2020, Determination of power losses in high-voltage direct current (HVDC) converter stations with line-commutated converters This document does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. For relationships with other publications refer to the NSAI web store. Compliance with this document does not of itself confer immunity from legal obligations. In line with international standards practice the decimal point is shown as a comma (,) throughout this document. This is a free page sample. Access the full version online. This page is intentionally left blank This is a free page sample. Access the full version online. I.S. EN IEC 61803:2020 **EUROPEAN STANDARD** **EN IEC 61803** NORME EUROPÉENNE **EUROPÄISCHE NORM** December 2020 ICS 29.200 Supersedes EN 61803:1999 and all of its amendments and corrigenda (if any) #### **English Version** # Determination of power losses in high-voltage direct current (HVDC) converter stations with line-commutated converters (IEC 61803:2020) Détermination des pertes en puissance dans les postes de conversion en courant continu à haute tension (CCHT) munis de convertisseurs commutés par la ligne (IEC 61803:2020) Bestimmung der Leistungsverluste in Hochspannungsgleichstrom- (HGÜ-)Stromrichterstationen mit netzgeführten Stromrichtern (IEC 61803:2020) This European Standard was approved by CENELEC on 2020-11-23. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions. CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom. European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels #### EN IEC 61803:2020 (E) #### **European foreword** The text of document 22F/563/CDV, future edition 2 of IEC 61803, prepared by SC 22F "Power electronics for electrical transmission and distribution systems" of IEC/TC 22 "Power electronic systems and equipment" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN IEC 61803:2020. The following dates are fixed: - latest date by which the document has to be implemented at national (dop) 2021-08-23 level by publication of an identical national standard or by endorsement - latest date by which the national standards conflicting with the document have to be withdrawn (dow) 2023-11-23 This document supersedes EN 61803:1999 and all of its amendments and corrigenda (if any). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights. #### **Endorsement notice** The text of the International Standard IEC 61803:2020 was approved by CENELEC as a European Standard without any modification. EN IEC 61803:2020 (E) #### Annex ZA (normative) ### Normative references to international publications with their corresponding European publications The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. NOTE 1 Where an International Publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies. NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available here: www.cenelec.eu. | <u>Publication</u> | <u>Year</u> | <u>Title</u> | EN/HD | <u>Year</u> | |--------------------|-------------|---------------------------------------------------------------------------------------------------------|--------------|-------------| | IEC 60076-1 | - | Power transformers - Part 1: General | EN 60076-1 | - | | IEC 60076-6 | - | Power transformers - Part 6: Reactors | EN 60076-6 | - | | IEC 60633 | - | High-voltage direct current (HVDC) transmission - Vocabulary | EN IEC 60633 | - | | IEC 60700-1 | 2015 | Thyristor valves for high voltage direct current (HVDC) power transmission - Part 1: Electrical testing | EN 60700-1 | 2015 | | IEC 60871-1 | - | Shunt capacitors for a.c. power systems having a rated voltage above 1 000 V - Part 1: General | EN 60871-1 | - | This is a free page sample. Access the full version online. This page is intentionally left blank IEC 61803 Edition 2.0 2020-10 # INTERNATIONAL STANDARD ### NORME INTERNATIONALE Determination of power losses in high-voltage direct current (HVDC) converter stations with line-commutated converters Détermination des pertes en puissance dans les postes de conversion en courant continu à haute tension (CCHT) munis de convertisseurs commutés par la ligne ### THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2020 IEC, Geneva, Switzerland All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information. Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence. IEC Central Office Tel.: +41 22 919 02 11 3, rue de Varembé info@iec.ch CH-1211 Geneva 20 www.iec.ch Switzerland #### About the IEC The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies. #### **About IEC publications** The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published. #### IEC publications search - webstore.iec.ch/advsearchform The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, replaced and withdrawn publications. #### IEC Just Published - webstore.iec.ch/justpublished Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email. #### IEC Customer Service Centre - webstore.iec.ch/csc If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch. #### Electropedia - www.electropedia.org The world's leading online dictionary on electrotechnology, containing more than 22 000 terminological entries in English and French, with equivalent terms in 16 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online. #### IEC Glossary - std.iec.ch/glossary 67 000 electrotechnical terminology entries in English and French extracted from the Terms and Definitions clause of IEC publications issued since 2002. Some entries have been collected from earlier publications of IEC TC 37, 77, 86 and CISPR. #### A propos de l'IEC La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées. #### A propos des publications IEC Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l'édition la plus récente, un corrigendum ou amendement peut avoir été publié. #### Recherche de publications IEC - webstore.iec.ch/advsearchform La recherche avancée permet de trouver des publications IEC en utilisant différents critères (numéro de référence, texte, comité d'études,...). Elle donne aussi des informations sur les projets et les publications remplacées ou retirées. #### IEC Just Published - webstore.iec.ch/justpublished Restez informé sur les nouvelles publications IEC. Just Published détaille les nouvelles publications parues. Disponible en ligne et une fois par mois par email. #### Service Clients - webstore.iec.ch/csc Si vous désirez nous donner des commentaires sur cette publication ou si vous avez des questions contactez-nous: sales@iec.ch. #### Electropedia - www.electropedia.org Le premier dictionnaire d'électrotechnologie en ligne au monde, avec plus de 22 000 articles terminologiques en anglais et en français, ainsi que les termes équivalents dans 16 langues additionnelles. Egalement appelé Vocabulaire Electrotechnique International (IEV) en ligne. #### Glossaire IEC - std.iec.ch/glossary 67 000 entrées terminologiques électrotechniques, en anglais et en français, extraites des articles Termes et Définitions des publications IEC parues depuis 2002. Plus certaines entrées antérieures extraites des publications des CE 37, 77, 86 et CISPR de l'IEC. IEC 61803 Edition 2.0 2020-10 ### INTERNATIONAL STANDARD ### NORME INTERNATIONALE Determination of power losses in high-voltage direct current (HVDC) converter stations with line-commutated converters Détermination des pertes en puissance dans les postes de conversion en courant continu à haute tension (CCHT) munis de convertisseurs commutés par la ligne INTERNATIONAL ELECTROTECHNICAL COMMISSION COMMISSION ELECTROTECHNIQUE INTERNATIONALE ICS 29,200 ISBN 978-2-8322-8948-8 Warning! Make sure that you obtained this publication from an authorized distributor. Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé. #### CONTENTS | F | DREWORD |) | 4 | |---|---------|----------------------------------------------------------|----| | 1 | Scope | | 6 | | 2 | Normati | ve references | 6 | | 3 | Terms, | definitions and symbols | 6 | | | | rms and definitions | | | | - | mbols | | | 4 | • | W | | | | | eneral | | | | | nbient conditions | | | | 4.2.1 | General | | | | 4.2.2 | Outdoor standard reference temperature | | | | 4.2.3 | Coolant standard reference temperature | | | | 4.2.4 | Standard reference air pressure | | | | | perating parameters | | | 5 | | nation of equipment losses | | | _ | | yristor valve losses | | | | 5.1.1 | General | | | | 5.1.2 | Thyristor conduction loss per valve | | | | 5.1.3 | Thyristor spreading loss per valve | | | | 5.1.4 | Other conduction losses per valve | | | | 5.1.5 | DC voltage-dependent loss per valve | | | | 5.1.6 | Damping loss per valve (resistor-dependent term) | | | | 5.1.7 | Damping loss per valve (change of capacitor energy term) | | | | 5.1.8 | Turn-off losses per valve | | | | 5.1.9 | Reactor loss per valve | | | | 5.1.10 | Total valve losses | | | | 5.1.11 | Temperature effects | 16 | | | 5.1.12 | No-load operation loss per valve | 16 | | | 5.2 Co | onverter transformer losses | 17 | | | 5.2.1 | General | 17 | | | 5.2.2 | No-load operation losses | 17 | | | 5.2.3 | Operating losses | 17 | | | 5.2.4 | Auxiliary power losses | 18 | | | 5.3 AC | C filter losses | 19 | | | 5.3.1 | General | 19 | | | 5.3.2 | AC filter capacitor losses | 19 | | | 5.3.3 | AC filter reactor losses | 19 | | | 5.3.4 | AC filter resistor losses | 20 | | | 5.3.5 | Total AC filter losses | 20 | | | | unt capacitor bank losses | | | | 5.5 Sh | unt reactor losses | 20 | | | | C smoothing reactor losses | | | | 5.7 DO | C filter losses | | | | 5.7.1 | General | | | | 5.7.2 | DC filter capacitor losses | | | | 5.7.3 | DC filter reactor losses | 22 | #### IEC 61803:2020 © IEC 2020 - 3 - | 5.7.4 DC filter resistor losses | 23 | |-----------------------------------------------------------------------------|-------| | 5.7.5 Total DC filter losses | 23 | | 5.8 Auxiliaries and station service losses | 23 | | 5.9 Series filter losses | 24 | | 5.10 Other equipment losses | 25 | | Annex A (informative) Calculation of harmonic currents and voltages | 31 | | A.1 Harmonic currents in converter transformers | 31 | | A.2 Harmonic currents in the AC filters | 31 | | A.3 Harmonic voltages on the DC side | 32 | | A.4 DC side harmonic currents in the smoothing reactor | 32 | | Annex B (informative) Typical station losses | 33 | | Annex C (informative) HVDC converter station loss evaluation – An illustrat | ion34 | | C.1 General | 34 | | C.2 Loss evaluation under various cases | 35 | | Bibliography | 37 | | Figure 1 – Typical high-voltage direct current (HVDC) equipment for one pol | le26 | | Figure 2 – Simplified three-phase diagram of an HVDC 12-pulse converter | 27 | | Figure 3 – Simplified equivalent circuit of a typical thyristor valve | 27 | | Figure 4 – Current and voltage waveforms of a valve operating in a 12-puls | | | Figure 5 – Thyristor on-state characteristic | 29 | | Figure 6 – Conduction current and voltage drop | 29 | | Figure 7 – Distribution of commutating inductance between L_1 and L_2 | 30 | | Figure 8 – Thyristor current during reverse recovery | 30 | | Table B.1 – Typical values of losses | 33 | | Table C.1 – Conditions for calculation of losses in case D1 | 36 | | Table C.2 – Conditions for calculation of losses in Case D2 | 36 | **-4** - IEC 61803:2020 © IEC 2020 #### INTERNATIONAL ELECTROTECHNICAL COMMISSION DETERMINATION OF POWER LOSSES IN HIGH-VOLTAGE DIRECT CURRENT (HVDC) CONVERTER STATIONS WITH LINE-COMMUTATED CONVERTERS #### **FORFWORD** - 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations. - 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees. - 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user. - 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter. - 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies. - 6) All users should ensure that they have the latest edition of this publication. - 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications. - 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication. - 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights. International Standard IEC 61803 has been prepared by subcommittee 22F: Power electronics for electrical transmission and distribution systems, of IEC technical committee 22: Power electronic systems and equipment. This second edition cancels and replaces the first edition published in 1999, Amendment 1:2010 and Amendment 2:2016. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) to facilitate the application of this document and to ensure its quality remains consistent, 5.1.8 and 5.8 have been reviewed, taking into consideration that the present thyristor production technology provides considerably less thyristor parameters dispersion comparing with the situation in 1999 when the first edition of IEC 61803 was developed, and therefore the production records of thyristors can be used for the power losses calculation; IEC 61803:2020 © IEC 2020 - 5 - b) the calculation of the total station load losses (cases D1 and D2 in Annex C) has been corrected. The text of this International Standard is based on the following documents: | CDV | Report on voting | | |-------------|------------------|--| | 22F/563/CDV | 22F/580A/RVC | | Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table. This document has been drafted in accordance with the ISO/IEC Directives, Part 2. The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be - · reconfirmed, - withdrawn, - · replaced by a revised edition, or - amended. **- 6 -** IEC 61803:2020 © IEC 2020 ## DETERMINATION OF POWER LOSSES IN HIGH-VOLTAGE DIRECT CURRENT (HVDC) CONVERTER STATIONS WITH LINE-COMMUTATED CONVERTERS #### 1 Scope This document applies to all line-commutated high-voltage direct current (HVDC) converter stations used for power exchange (power transmission or back-to-back installation) in utility systems. This document presumes the use of 12-pulse thyristor converters but can, with due care, also be used for 6-pulse thyristor converters. In some applications, synchronous compensators or static var compensators (SVC) may be connected to the AC bus of the HVDC converter station. The loss determination procedures for such equipment are not included in this document. This document presents a set of standard procedures for determining the total losses of an HVDC converter station. The procedures cover all parts, except as noted above, and address no-load operation and operating losses together with their methods of calculation which use, wherever possible, measured parameters. Converter station designs employing novel components or circuit configurations compared to the typical design assumed in this document, or designs equipped with unusual auxiliary circuits that could affect the losses, are assessed on their own merits. #### 2 Normative references The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. IEC 60076-1, Power transformers - Part 1: General IEC 60076-6, Power transformers – Part 6: Reactors IEC 60633, High-voltage direct current (HVDC) transmission – Vocabulary IEC 60700-1:2015, Thyristor valves for high voltage direct current (HVDC) power transmission – Part 1: Electrical testing IEC 60871-1, Shunt capacitors for a.c. power systems having a rated voltage above 1 000 V – Part 1: General #### 3 Terms, definitions and symbols For the purposes of this document, the terms and definition given in IEC 60633 and the following apply. **Product Page** - Dooking for additional Standards? Visit Intertek Inform Infostore - Dearn about LexConnect, All Jurisdictions, Standards referenced in Australian legislation