AS IEC 61078:2017 IEC 61078:2016 (Ed. 3.0)

Reliability block diagrams

This is a free page sample. Access the full version online.

This Australian Standard® was prepared by Committee QR-005, Dependability. It was approved on behalf of the Council of Standards Australia on 20 March 2017. This Standard was published on 12 May 2017.

The following are represented on Committee QR-005:

- Asset Management Council
- Department of Defence (Australian Government)
- Engineers Australia
- Independent Transport Safety and Reliability Regulator
- Professionals Australia
- Risk Management Institution
- The University of New South Wales
- University of Wollongong

This Standard was issued in draft form for comment as DR AS/NZS IEC 61078:2017.

Standards Australia wishes to acknowledge the participation of the expert individuals that contributed to the development of this Standard through their representation on the Committee and through the public comment period.

Keeping Standards up-to-date

Australian Standards® are living documents that reflect progress in science, technology and systems. To maintain their currency, all Standards are periodically reviewed, and new editions are published. Between editions, amendments may be issued.

Standards may also be withdrawn. It is important that readers assure themselves they are using a current Standard, which should include any amendments that may have been published since the Standard was published.

Detailed information about Australian Standards, drafts, amendments and new projects can be found by visiting **www.standards.org.au**

Standards Australia welcomes suggestions for improvements, and encourages readers to notify us immediately of any apparent inaccuracies or ambiguities. Contact us via email at **mail@standards.org.au**, or write to Standards Australia, GPO Box 476, Sydney, NSW 2001.

AS IEC 61078:2017

Australian Standard®

Reliability block diagrams

Originated as AS IEC 61078—2008. Second edition AS IEC 61078:2017.

COPYRIGHT

© Standards Australia Limited

All rights are reserved. No part of this work may be reproduced or copied in any form or by any means, electronic or mechanical, including photocopying, without the written permission of the publisher, unless otherwise permitted under the Copyright Act 1968.

Published by SAI Global Limited under licence from Standards Australia Limited, GPO Box 476, Sydney, NSW 2001, Australia

ISBN 978 1 76035 760 3

2

PREFACE

This Standard was prepared by the Standards Australia Committee QR-005, Dependability, to supersede AS IEC 61078—2008, Analysis techniques for system reliability—Reliability block diagram and Boolean methods.

The objective of this Standard is to describe the requirements that apply when reliability block diagrams (RBDs) are used in dependability analysis. It also describes the procedures for modelling the dependability of a system with RBDs. This Standard includes guidance on other methods of analysis and describes the relationships between RBDs and fault tree analysis and Markov techniques.

This Standard is identical with, and has been reproduced from IEC 61078:2016 (Ed. 3.0), *Reliability block diagrams*.

As this Standard is reproduced from an International Standard, the following applies:

(a) In the source text 'this International Standard' should read 'this Australian Standard'.

(b) A full point substitutes for a comma when referring to a decimal marker.

None of the normative references in the source document have been adopted as Australian or Australian/New Zealand Standards.

The term 'informative' has been used in this Standard to define the application of the annex to which it applies. An 'informative' annex is only for information and guidance.

3

CONTENTS

1	Scop	pe	11
2	Norm	native references	11
3	Term	is and definitions	11
4	Sym	bols and abbreviated terms	18
5	Preli	minary considerations, main assumptions, and limitations	22
	5.1	General considerations	22
	5.2	Pre-requisite/main assumptions	23
	5.3	Limitations	23
6	Esta	blishment of system success/failed states	24
	6.1	General considerations	24
	6.2	Detailed considerations	24
	6.2.1	System operation	24
	6.2.2	2 Environmental conditions	25
	6.2.3	Duty cycles	25
7	Elem	entary models	25
	7.1	Developing the model	25
	7.2	Series structures	25
	7.3	Parallel structures	26
	7.4	Mix of series and parallel structures	26
	7.5	Other structures	27
	7.5.1	<i>m</i> out of <i>n</i> structures	27
	7.5.2	Structures with common blocks	28
	7.5.3		29
0	7.6 Oucl	Large RBDs and use of transfer gates	29
0	Quai		
	8.1	Electrical analogy	30
	8.2	Series-parallel representation with minimal success path and cut sets	32
0	8.3 Ouar	Qualitative analysis from minimal cut sets	33
9	Quai	Carias structures	
	9.1	Parallel structures	
	9.2 Q 3	Mix of series and parallel structures	
	9.4	m/n architectures (identical items)	
10) Quar	ntitative analysis: blocks with time dependent probabilities of failure/success	35
	10.1	General	35
	10.2	Non-repaired blocks	36
	10.2	1 General	36
	10.2	2 Simple non-repaired block	36
	10.2	.3 Non-repaired composite blocks	36
	10.2	4 RBDs with non-repaired blocks	37
	10.3	Repaired blocks	37
	10.3	1 Availability calculations	37
	10.3	2 Average availability calculations	40

This is a free preview. Purchase the entire publication at the link below:

Product Page

S Looking for additional Standards? Visit Intertek Inform Infostore

> Learn about LexConnect, All Jurisdictions, Standards referenced in Australian legislation