AS/NZS CISPR 22:2004 CISPR 22:2003

Australian/New Zealand Standard™

Information technology equipment— Radio disturbance characteristics— Limits and methods of measurement

AS/NZS CISPR 22:2004

This Joint Australian/New Zealand Standard was prepared by Joint Technical Committee TE-003, Electromagnetic Interference. It was approved on behalf of the Council of Standards Australia on 2 June 2004 and on behalf of the Council of Standards New Zealand on 11 June 2004.

It was published on 6 July 2004.

The following are represented on Committee TE-003:

Australian Broadcasting Authority Australian Broadcasting Corporation Australian Chamber of Commerce and Industry Australian Communications Authority Australian Electrical and Electronic Manufacturers Association Australian Information Industry Association CSIRO Telecommunications and Industrial Physics Commercial Television Australia Department of Defence (Australia) Electrical Compliance Testing Association Institution of Engineers Australia Ministry of Economic Development (New Zealand) SingTel Optus Society of Automotive Engineers-Australasia Telstra Corporation University of Western Australia Wireless Institute Australia

Keeping Standards up-to-date

Standards are living documents which reflect progress in science, technology and systems. To maintain their currency, all Standards are periodically reviewed, and new editions are published. Between editions, amendments may be issued. Standards may also be withdrawn. It is important that readers assure themselves they are using a current Standard, which should include any amendments which may have been published since the Standard was purchased.

Detailed information about joint Australian/New Zealand Standards can be found by visiting the Standards Web Shop at www.standards.com.au or Standards New Zealand web site at www.standards.co.nz and looking up the relevant Standard in the on-line catalogue.

Alternatively, both organizations publish an annual printed Catalogue with full details of all current Standards. For more frequent listings or notification of revisions, amendments and withdrawals, Standards Australia and Standards New Zealand offer a number of update options. For information about these services, users should contact their respective national Standards organization.

We also welcome suggestions for improvement in our Standards, and especially encourage readers to notify us immediately of any apparent inaccuracies or ambiguities. Please address your comments to the Chief Executive of either Standards Australia International or Standards New Zealand at the address shown on the back cover.

This Standard was issued in draft form for comment as DR 04200.

Australian/New Zealand Standard[™]

Information technology equipment— Radio disturbance characteristics— Limits and methods of measurement

Originated as AS/NZS 3548:1995. Previous edition AS/NZS CISPR 22:2002. Second edition 2004.

COPYRIGHT

© Standards Australia/Standards New Zealand

All rights are reserved. No part of this work may be reproduced or copied in any form or by any means, electronic or mechanical, including photocopying, without the written permission of the publisher.

Jointly published by Standards Australia International Ltd, GPO Box 5420, Sydney, NSW 2001 and Standards New Zealand, Private Bag 2439, Wellington 6020

ii

PREFACE

This Standard was prepared by the Joint Standards Australia/Standards New Zealand Committee TE-003, Electromagnetic Interference to supersede AS/NZS CISPR 22:2002.

This Standard is identical with, and has been reproduced from, CISPR 22:2003, Information technology equipment—Radio disturbance characteristics—Limits and methods of measurement.

The objective of this Standard is to specify uniform requirements for the radio disturbance level of the equipment contained in the scope, to fix limits of disturbance, to describe methods of measurement and to standardize operating conditions and interpretation of results.

The terms 'normative' and 'informative' are used to define the application of the annex to which they apply. A normative annex is an integral part of a standard, whereas an informative annex is only for information and guidance.

As this Standard is reproduced from an International Standard, the following applies:

- (a) Its number does not appear on each page of text and its identity is shown only on the cover and title page.
- (b) In the source text 'this International Standard' should read 'this Australian/New Zealand Standard'.
- (c) A full point should be substituted for a comma when referring to a decimal marker.
- (d) Any French text on figures should be ignored.

iii

CONTENTS

	F	'age
1	Scope and object	1
2	Normative references	1
3	Definitions	2
4	Classification of ITE	3
5	Limits for conducted disturbance at mains terminals and telecommunication ports	3
6	Limits for radiated disturbance	5
7	Interpretation of CISPR radio disturbance limit	5
8	General measurement conditions	6
9	Method of measurement of conducted disturbance at mains terminals and telecommunication ports	11
10	Method of measurement of radiated disturbance	16
Anr	nex A (normative) Site attenuation measurements of alternative test sites	32
Anr	nex B (normative) Decision tree for peak detector measurements	38
Anr	nex C (normative) Possible test set-ups for common mode measurements	39
Anr	nex D (informative) Schematic diagrams of examples of impedance stabilization networks (ISN)	43
Anr	nex E (informative) Parameters of signals at telecommunication ports	53
Fig	ure 1 – Test site	19
Fig	ure 2 – Minimum alternative measurement site	20
Fig	ure 3 – Minimum size of metal ground plane	20
Fig	ure 4 – Test configuration: tabletop equipment (conducted measurement)	21
Fig	ure 5 – Alternative test configuration: tabletop equipment (conducted measurement)	22
Fig viev	ure 6 – Alternative test configuration: tabletop equipment (conducted measurement) – F N	'lan 23
Figi test	ure 7 – Test configuration: tabletop equipment (conducted measurement on a radiated t site)	24
Fig	ure 8 – Test configuration: floor-standing equipment (conducted measurement)	25
Figi mea	ure 9 – Test configuration: floor-standing and table-top equipment (conducted asurement)	26
Fig	ure 10 – Test configuration: table-top equipment (radiated measurement)	27
Fig	ure 11 – Test configuration: floor-standing equipment (radiated measurement)	28
Fig mea	ure 12 – Test configuration: floor-standing and table-top equipment (radiated assurement)	29
Fig	ure 13 – Test configuration: floor-standing equipment (overhead cables, side view)	30
Fig	ure 14 – Test configuration: floor-standing equipment (overhead cables, plan view)	31
Fig	ure A.1 – Typical antenna positions for alternate site NSA measurements	35
Figi volu	ure A.2 – Antenna positions for alternate site measurements for minimum recommender	d 36
Fig	ure B.1 – Decision tree for peak detector measurements	38
Fig	ure C.1 – Using CDNs described in IEC 61000-4-6 as CDN/ISNs	39
Fig	ure C.2 – Using a 150 Ω load to the outside surface of the shield ("in situ CDN/ISN")	40

This is a free preview. Purchase the entire publication at the link below:

Product Page

S Looking for additional Standards? Visit Intertek Inform Infostore

> Learn about LexConnect, All Jurisdictions, Standards referenced in Australian legislation