

.

IRISH NATIONAL APPLICATION DOCUMENT

FOR

EUROCODE 7 : GEOTECHNICAL DESIGN-

PART 1 : GENERAL RULES (ENV 1997-1:1994)

OCTOBER 1995.

.

IRISH NATIONAL APPLICATION DOCUMENT

FOR

EUROCODE 7 : GEOTECHNICAL DESIGN-

PART 1 : GENERAL RULES (ENV 1997-1:1994)

Conte	nts	Page
Scope		3
1	Field of Application	3
2	Clarifications and additional requirements	3
3	Reference Documents	4

6

Boxed Values

4

SCOPE

This document is intended to provide the minimum additional information required to permit the application of Eurocode 7 : Geotechnical Design - Part 1:General Rules (ENV-1997-1:1994).

The NAD is intended to provide an opportunity to apply the ENV in an experimental way and the philosophy adopted in Ireland is to accept the ENV with the minimum of modification subject to satisfaction of the Building Regulations and regulations appropriate to other types of structures.

NB

Attention is drawn to the fact that the administrative procedures normally used on Irish projects may not satisfy the requirements of this Eurocode. Specific requirements are contained in clauses 2.8, 3.4 and 4.1 covering, inter alia, the Geotechnical Design Report, the Ground Investigation Report and Supervision, Monitoring and Maintenance. It is suggested that, during the ENV period, particular attention be paid to these requirements with a view to ascertaining their contractual and legal significance.

1 FIELD OF APPLICATION

This part of Eurocode 7 is intended to be used for the geotechnical aspects of the design of buildings and civil engineering works (see clause 1.1.2 of ENV 1997-1).

2 CLARIFICATIONS AND ADDITIONAL REQUIREMENTS.

2.1 Values of ϕ_d

For ease of design, the following table gives ϕ_d values corresponding to ϕ_k values for use with design cases A,B and C in accordance with clause 2.4.2(15)

$\phi_{\mathbf{k}}$	ϕ_{d} Case A	ϕ_d Case B	$\phi_{\rm d}$ Case C
28	25.8	28	23.0
30	27.7	30	24.8
32	29.6	32	26.6
34	31.5	34	28.4
36	33.4	36	30.2
38	35.4	38	32.0
40	37.3	40	33.9

2.2 Foundation settlement limits

Clause 2.4.6(7) limits total settlements to 50mm but normal strip and pad footings are to be designed for a total settlement of 25mm.

EUROPEAN PRESTANDARD

ENV 1997-1

October 1994

PRÉNORME EUROPÉENNE

EUROPÄISCHE VORNORM

ICS 91.060.00; 91.120.20

Descriptors: soils, computation, buildings codes, rules of calculation

English version

Eurocode 7: Geotechnical design - Part 1: General rules -

Eurocode 7: Calcul geotechnique - Partie 1: Règles générales Eurocode 7: Entwurf, Berechnung und Bemessung in der Geotechnik - Teil 1: Allgemeine Regeln

This European Prestandard (ENV) was approved by CEN on 1993-05-25 as a prospective standard for provisional application. The period of validity of this ENV is limited initially to three years. After two years the members of CEN will be requested to submit their comments, particularly on the question whether the ENV can be converted into an European Standard (EN).

CEN members are required to announce the existance of this ENV in the same way as for an EN and to make the ENV available promptly at national level in an appropriate form. It is permissible to keep conflicting national standards in force (in parallel to the ENV) until the final decision about the possible conversion of the ENV into an EN is reached.

CEN members are the national standards bodies of Austria, Belgium, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and United Kingdom.

CEN

European Committee for Standardization Comité Européen de Normalisation Europäisches Komitee für Normung

Central Secretariat: rue de Stassart, 36 B-1050 Brussels

• 1994 Copyright reserved to CEN members

Ref. No. ENV 1997-1:1994 E

Page 2 ENV 1997-1:1994

Contents

la

~

.

		page
Foreword		6
1	GENERAL	9
1.1	Scope	9
1.1.1	Scope of Eurocode 7	9
1.1.2	Scope of Part 1 of Eurocode 7	9
1.1.3	Further Parts of Eurocode 7	10
1.2	References	10
1.3	Distinction between Principles and Application Rules	10
1.4	Assumptions	10
1.5	Definitions	11
1.5.1	Terms common to all Eurocodes	11
1.5.2	Special terms used in Eurocode 7	11
1.6	S.I. units	11
1.7	Symbols common to all Eurocodes	11
1.8	Symbols used in Eurocode 7	11
1.8.1	Latin upper case letters	12
1.8.2	Latin lower case letters	12
1.8.3	Greek lower case letters	12
1.8.4	Subscripts	12
2	BASIS OF GEOTECHNICAL DESIGN	13
2.1	Design requirements	13
2.2	Design situations	15
2.3	Durability	16
2.4	Geotechnical design by calculation	16
2.4.1	Introduction	16
2.4.2	Actions in geotechnical design	17
2.4.3	Ground properties	21
2.4.4	Design strength of structural materials	23
2.4.5	Geometrical data	23
2.4.6	Limiting values for movements	23
2.5	Design by prescriptive measures	24
2.6	Load tests and tests on experimental models	25
2.7	The observational method	25
2.8	The Geotechnical Design Report	25
3	GEOTECHNICAL DATA	27
3.1	General	27
3.2	Geotechnical investigations	27
3.2.1	Introduction	27
3.2.2	Preliminary investigations	28
3.2.3	Design investigations	28
3.3	Evaluation of geotechnical parameters	30
3.3.1	General	30
3.3.2	Characterization of soil and rock type	31
3.3.3	Unit weight	32
3.3.4	Relative density	32
3.3.5	Degree of compaction	32
3.3.6	Undrained shear strength of cohesive soils	32
3.3.7	Effective shear strength parameters for soils	33
3.3.8	Soil stiffness	33
3.3.9	Quality and properties of rocks and rock masses	34
3.3.10	Permeability and consolidation parameters	35

.

•

3.3.11 3.3.12	Cone parameters Blow count from standard penetration tests and dynamic	36
	probing	36
3.3.13	Pressuremeter parameters	36
3.3.14	Dilatometer parameters	37
3.3.15	Compactibility	37
3.4	Ground Investigation Report	37
3.4.1	Presentation of geotechnical information	37
3.4.2	Evaluation of geotechnical information	38
4	SUPERVISION OF CONSTRUCTION, MONITORING AND MAINTENANCE	40
4.1	General requirements	40
4.2	Supervision	41
4.2.1	Plan of supervision	41
4.2.2	Inspection and control	41
4.2.3	Assessment of the design	41
4.3 4.3.1	Checking ground conditions Soil and rock	42 42
4.3.1	Groundwater	42
4.3.2	Checking construction	42
4.5	Monitoring	44
4.6	Maintenance	45
5	FILL, DEWATERING, GROUND IMPROVEMENT	46
5.1	General	46
5.2	Fundamental requirements	46
5.3	Fill construction	46 46
5.3.1 5.3.2	Principles Selection of fill material	48
5.3.3	Selection of fill placement and compaction procedures	47
5.3.4	Checking the fill	48
5.4	Dewatering	40
5.5	Ground improvement and reinforcement	50
6	SPREAD FOUNDATIONS	52
6.1	General	52
6.2	Limit states	52
6.3	Actions and design situations	52
6.4	Design and construction considerations	52
6.5	Ultimate limit state design	53
6.5.1	Overall stability	53
6.5.2	Bearing resistance failure	53
6.5.3	Failure by sliding	54
6.5.4	Loads with large eccentricities	56
6.5.5	Structural failure due to foundation movement	56
6.6	Serviceability limit state design	56 57
6.6.1 6.6.2	Settlement Withoution analysis	58
	Vibration analysis Foundations on rock: Additional design considerations	58
6.7 6.8	Structural design	59
_		60
7 7.1	PILE FOUNDATIONS General	60
7.1 7.2	General Limit states	60
7.3	Actions and design situations	60
7.3.1	General	60
7.3.2	Actions due to ground displacement	60
7.4	Design methods and design considerations	62

.

Page 4 ENV 1997-1:1994

7.4.1	Design methods	
7.4.2	Design considerations	62
7.5	Pile load tests	62
7.5.1	General	63
7.5.2		63
7.5.3		64
7.5.4	Load test report	65
7.6	Piles in compression	66
7.6.1	Limit state design	66
7.6.2	Overall stability	66
7.6.3	Bearing resistance	67
7.6.4	Settlement of pile foundations	67
7.7	Piles in tension	72
7.7.1	General	72
7.7.2		72
7.7.3	Vertical displacement	73
7.8	Transversely loaded piles	75
7.8.1	General	76
7.8.2	Ultimate transverse load resistance	76
7.8.3	Transverse displacement	76
7.9	Structural design of piles	77
7.10	Supervision of construction	77
		78
8	RETAINING STRUCTURES	
8.1	General	80
8.2	Limit states	80
8.3	Actions, geometrical data and design situations	80
8.3.1	Actions	81
8.3.2	Geometrical data	81
8.3.3	Design situations	82
8.4	Design and construction considerations	83
8.5	Determination of earth and water pressures	83
8.5.1	besign earch pressures	85
8.5.2	At rest values of earth pressure	85
8.5.3	Limit values of earth pressure	86
8.5.4	Intermediate values of earth pressure	86 87
8.5.5	compaction effects	
8.5.6	Water pressures	87 87
8.6 8.6.1	Ultimate limit state design	88
8.6.2	General	88
8.6.3	Overall stability	88
8.6.4	Foundation failure of gravity walls	89
8.6.5	Rotational failure of embedded walls	89
8.6.6	Vertical failure of embedded walls	90
8.6.7	Structural failure	91
8.7	Failure by pull-out of anchors	93
8.7.1	Serviceability limit state General	94
8.7.2	Displacements	94
8.7.3	Vibrations	94
8.7.4		94
8.8	Structural serviceability limit states Anchorages	94
8.8.1	Scope	95
8.8.2	Anchorage design	95
8.8.3	Construction considerations	95
8.8.4	Anchorage testing	96
8.8.5	Assessment tests	96
8.8.6	Acceptance tests	97
		98

-

•

٩

~

8.8.7	Supervision of construction and monitoring	98
9	EMBANKMENTS AND SLOPES	100
9.1	General	100
9.2	Limit states	100
9.3	Actions and design situations	100
9.4	Design and construction considerations	101
9.5	Ultimate limit state design	101
9.5.1	Loss of overall stability	101
9.5.2	Deformations	102
9.5.3	Superficial erosion, internal erosion and hydraulic uplift	
9.5.4	Rockslides	103
9.5.5	Rockfalls	103
9.5.6	Creep	103
9.6	Serviceability limit state design	103
9.7	Monitoring	104
ANNEXES		
ANNEX A:	CHECK LIST FOR CONSTRUCTION SUPERVISION AND PERFORMANCE	
MONITORIN		105
A, 1	Construction supervision	105
A.1.1	General items to be checked	105
A.1.2	Water flow and pore pressures	105
A.2	Performance monitoring	106
ANNEX B: CALCULATI	A SAMPLE ANALYTICAL METHOD FOR BEARING RESISTANCE	107
B.1	General	107
B.2	Undrained conditions	107
B.3	Drained conditions	108
ANNEX C:	A SAMPLE SEMI-EMPIRICAL METHOD FOR BEARING RESISTANCE	
ESTIMATIC		109
ANNEX D:	SAMPLE METHODS FOR SETTLEMENT EVALUATION	110
D.1	Stress-strain method	110
D.2	Adjusted elasticity method	110
D.3	Settlements without drainage	111
D.4	Settlements caused by consolidation	111
D.5	Time-settlement behaviour	111
ANNEX E:	A SAMPLE METHOD FOR DERIVING PRESUMED BEARING RESISTANCE F	OR
SPREAD FO	UNDATIONS ON ROCK	112
	A SAMPLE CALCULATION MODEL FOR THE TENSILE RESISTANCE OF	***
INDIVIDUA	IL OR GROUPED PILES	115
	SAMPLE PROCEDURES TO DETERMINE LIMIT VALUES OF	
EARTH PRE	ISSURE	117

Page 6 ENV 1997-1:1994

Foreword

1 Objectives of the Eurocodes

(1) The structural Eurocodes comprise a group of standards for the structural and geotechnical design of buildings and civil engineering works.

(2) They are intended to serve as reference documents for the following purposes:

- (a) As a means to prove compliance of building and civil engineering works with the essential requirements of the Construction Products Directive (CPD)
- (b) As a framework for drawing up harmonised technical specifications for construction products.

(3) They cover execution and control only to the extent that is necessary to indicate the quality of the construction products, and the standard of the workmanship, needed to comply with the assumptions of the design rules.

(4) Until the necessary set of harmonised technical specifications for products and for methods of testing their performance is available, some of the Structural Eurocodes cover some of these aspects in informative annexes.

2 Background to the Eurocode programme

(1) The Commission of the European Communities (CEC) initiated the work of establishing a set of harmonised technical rules for the design of building and civil engineering works which would initially serve as an alternative to the different rules in force in the various Member States and would ultimately replace them. These technical rules became known as the "Structural Eurocodes".

(2) In 1990, after consulting their respective Member States, the CEC transferred work of further development, issue and updates of the Structural Eurocodes to CEN and the EFTA Secretariat agreed to support the CEN work.

(3) CEN Technical Committee CEN/TC 250 is responsible for all Structural Eurocodes.

3 Eurocode programme

(1) Work is in hand on the following Structural Eurocodes, each generally consisting of a number of parts:

EN 1991 Eurocode 1 Basis of design and actions on structures EN 1992 Eurocode 2 Design of concrete structures EN 1993 Eurocode 3 Design of steel structures EN 1994 Eurocode 4 Design of composite steel and concrete structures EN 1995 Eurocode 5 Design of timber structures EN 1996 Eurocode 6 Design of masonry structures EN 1997 Eurocode 7 Geotechnical design EN 1998 Eurocode 8 Design of structures for earthquake resistance. EN 1999 Eurocode 9 Design of aluminium alloy structures

(2) Separate sub-committees have been formed by CEN/TC 250 for the various Eurocodes listed above.

(3) This part of the Structural Eurocode for Geotechnical design which had been finalised and approved for publication under the direction of CEC, is being issued by CEN as a European Prestandard (ENV) with an initial life of three years.

(4) This Prestandard is intended for experimental practical application in the design of the building and civil engineering works covered by the scope as given in 1.1.2 and for the submission of comments.

(5) After approximately two years CEN members will be invited to submit formal comments to be taken into account in determining future action.

(6) Meanwhile, feedback and comments on this Prestandard should be sent to the Secretariat of sub-committee CEN/TC250/SC7 at the following address:

NNI P.O.Box 5059 NL-2600 GB Delft The Netherlands

or to a national standards organisation.

4 National application documents

(1) In view of the responsibilities of authorities in member countries for the safety, health and other matters covered by the essential requirements of the CPD, certain safety elements in this ENV have been assigned indicative values which are identified by []. The authorities in each member country are expected to assign definitive values to these safety elements.

(2) Many of the supporting standards, including those giving values for actions to be taken into account and measures required for fire protection, will not be available by the time this Prestandard is issued. It is therefore anticipated that a National Application Document giving definitive values for safety elements, referencing compatible supporting standards and giving national guidance on the application of this Prestandard will be issued by each Member State or its Standard Organisation. This Prestandard should be used in conjunction with the National Application Document valid in the country where the building and civil engineering works is to be constructed.

It is intended that this Prestandard is used in conjunction with the NAD valid in the country where the building or civil engineering works are located.

Page 8 ENV 1997-1:1994

5 Matters specific to this prestandard

(1) The scope of eurocode 7 is defined in 1.1.1 and the scope of this Part of eurocode 7 is defined in 1.1.2. Additional Parts of Eurocode 7 which are planned are indicated in 1.1.3; these will cover additional technologies or applications, and will complement and supplement this Part.

(2) In using this Prestandard in practice, particular regard should be paid to the underlying assumptions and conditions given in 1.3.

(3) The nine chapters of this Prestandard are complemented by seven annexes which have informative status.

Section 1 GENERAL

1.1 Scope

1.1.1 Scope of Eurocode 7

(1)P This prestandard applies to the geotechnical aspects of the design of buildings and civil engineering works. It is subdivided into various separate parts. See 1.1.2 and 1.1.3.

(2)P This prestandard is concerned with the requirements for strength, stability, serviceability and durability of the structures. Other requirements, e.g. concerning thermal or sound insulation, are not considered.

(3)P This prestandard shall be used in conjunction with ENV 1991-1 "Basis of Design" of Eurocode 1 "Basis of Design and Actions on Structures" which establishes the principles and requirements for safety and serviceability, describes the basis for design and verification and gives guidelines for related aspects of structural reliability.

(4)P This prestandard gives the rules to calculate actions originating from the ground such as earth pressures. Numerical values of actions on buildings and civil engineering works to be taken into account in the design are provided in ENV 1991 Eurocode 1 "Basis of Design and Actions on Structures" applicable to the various types of construction.

(5)P In this prestandard execution is covered to the extent that is necessary to indicate the quality of the construction materials and products which should be used and the standard of workmanship on site needed to comply with the assumptions of the design rules. Generally, the rules related to execution and workmanship are to be considered as minimum requirements which may have to be further developed for particular types of buildings or civil engineering works and methods of construction.

(6)P This prestandard does not cover the special requirements of seismic design. Eurocode 8, "Designprovisions for earthquake resistance of structures" provides additional rules for seismic design which complete or adapt the rules of this prestandard.

1.1.2 Scope of ENV 1997-1

(1)P This prestandard gives a general basis for the geotechnical aspects of the design of buildings and civil engineering works.

(2)P The following subjects are dealt with in ENV 1997-1 Eurocode 7 "Geotechnical design".

Section 1: General Section 2: Basis of Geotechnical Design Section 3: Geotechnical Data Section 4: Supervision of Construction, Monitoring and Maintenance Section 5: Fill, Dewatering, Ground Improvement and Reinforcement Section 6: Spread Foundations

This is a free preview. Purchase the entire publication at the link below:

Product Page

S Looking for additional Standards? Visit Intertek Inform Infostore

> Learn about LexConnect, All Jurisdictions, Standards referenced in Australian legislation