

I.S. CEN/TR 15281:2006

ICS 13.230

National Standards Authority of Ireland Glasnevin, Dublin 9 Ireland

Tel: +353 1 807 3800 Fax: +353 1 807 3838 http://www.nsai.ie

GUIDANCE ON INERTING FOR THE PREVENTION OF EXPLOSIONS

Sales

http://www.standards.ie

This Irish Standard was published under the authority of the National Standards Authority of Ireland and comes into effect on: 4 August 2006

NO COPYING WITHOUT NSAI PERMISSION EXCEPT AS PERMITTED BY COPYRIGHT LAW

© NSAI 2006 Price Code P

Údarás um Chaighdeáin Náisiúnta na hÉireann

This is a free page sample. Access the full version online.

TECHNICAL REPORT RAPPORT TECHNIQUE

TECHNISCHER BERICHT

CEN/TR 15281

May 2006

ICS 13.230

English Version

Guidance on Inerting for the Prevention of Explosions

Atmosphères explosibles - Guide de l'inertage pour la prévention des explosions

This Technical Report was approved by CEN on 8 November 2005. It has been drawn up by the Technical Committee CEN/TC 305.

CEN members are the national standards bodies of Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

Management Centre: rue de Stassart, 36 B-1050 Brussels

CEN/TR 15281:2006 (E)

Cont	Contents Pag				
Forewo	ord	4			
1	Scope	5			
2	Normative references	5			
3	Terminology and abbreviations	6			
3.1	Terminology				
3.2	Abbreviations				
4	Inert gases				
5 5.1	Influence of the oxygen concentration on explosive atmospheres	9 9			
5.2	Gas and vapour explosions	10			
5.3 5.4	Dust explosions				
5.5	Mists				
5.6	Influence of process parameters	15			
6	Methods of Inerting				
6.1 6.2	General Pressure swing inerting				
6.3	Vacuum-swing inerting	19			
6.4 6.5	Flow-through inerting				
6.6	Maintaining inert conditions				
7	Inerting systems				
7.1 7.2	General introduction				
7.3	Monitoring and control system				
7.4	Methods	25			
8 8.1 8.2	Reliability				
	Demands for safety critical equipment				
9	Personnel and environmental protection				
10	Information for use	29			
Annex	A (informative) Oxygen monitoring technology	30			
Annex	B (informative) Equations for pressure-swing inerting	33			
Annex	C (informative) Calculations for flow-through inerting	36			
Annex	D (informative) Addition of solids to an inerted vessel using a double valve arrangement	38			
Annex	E (informative) Addition of solids down a charge-chute to an open vessel	41			
Annex	F (informative) Examples on inerting specific items of process equipment	45			
	G (informative) Prevention of diffusion of air down vent pipes				
Bibliog	raphy	52			

CEN/TR 15281:2006 (E)

Figures

Figure 1 — Influence of inert gas on explosion limits of methane (according to [32], Figure 28	10
Figure 2 — Flammability diagram for air-propane-nitrogen (according to [8])	11
Figure 3 — Triangular flammability diagram for fuel-oxygen-nitrogen	
Figure 4 — Influence of oxygen concentration on the explosion pressure of brown coal (acc	ording to
[7])	13
Figure 5 — Influence of oxygen concentration on the rate of explosion pressure rise of br	own coal
(according to [7])	14
Figure 6 — Influence of oxygen concentration on maximum explosion pressure for br	own coal
(according to [29])	14
Figure 7 — Effect of temperature on ignition sensitivity of dusts (according to [7])	16
Figure 8 — Temperature influence on limiting oxygen concentration (according to [29])	17
Figure 9 — Influence of pressure on inerting brown coal (according to [29])	
Figure 10 — Pressure influence on amount of inert gas required for inerting propane (accordi	ng to [32]
Figure 40)	18
Figure 11 — Specification of safe limits for control	25
Figure D.1 — Example of addition of solids for an inerted vessel using a double value arrange	ment38
Figure F.1 — Agitated pressure filter/dryer	45
Figure F.2 — Top discharge centrifuge	46
Figure F.3 — Inverting filter horizontal basket centrifuge	
Figure F.4 — Pinned disc grinding mill	48
Figure F.5 — Horizontal paddle dryer	49
Figure G.1 — Value of exponent N in equation [18] for various pipe diameters	51
Tables	
Table B.1 — Typical rates of pressure rise for vacuum systems	
Table B.2 — Selected values of $k = C_p/C_v$ for various inert gases	35

CEN/TR 15281:2006 (E)

Foreword

This Technical Report (CEN/TR 15281:2006) has been prepared by Technical Committee CEN/TC 305 "Potentially explosive atmospheres – Explosion prevention and protection", the secretariat of which is held by DIN.

The is a new provider i arenade and chare publication at the limit below	This is a free preview.	Purchase the	entire publication	at the link below:
--	-------------------------	--------------	--------------------	--------------------

Product Page

- Dooking for additional Standards? Visit Intertek Inform Infostore
- Dearn about LexConnect, All Jurisdictions, Standards referenced in Australian legislation