This is a free page sample. Access the full version online.

Irish Standard I.S. EN 60825-4:2006

Safety of laser products -- Part 4: Laser guards (IEC 60825-4:2006 (EQV))

 $\ensuremath{\mathbb{C}}$ NSAI 2006 No copying without NSAI permission except as permitted by copyright law.

This is a free page sample. Access the full version online.

I.S. EN 60825-4:2006

Incorporating amendments/corrigenda issued since publication: EN 60825-4:2006/A1:2008 EN 60825-4:2006/A2:2011

The National Standards Authority of Ireland (NSAI) produces the following categories of formal documents:

I.S. xxx: Irish Standard – national specification based on the consensus of an expert panel and subject to public consultation.

S.R. xxx: Standard Recommendation - recommendation based on the consensus of an expert panel and subject to public consultation.

SWiFT xxx: A rapidly developed recommendatory document based on the consensus of the participants of an NSAI workshop.

<i>This document replaces:</i> EN 60825-4:1997 + A1:2002 + A2:2003	<i>This document is based on:</i> EN 60825-4:2006	<i>Publisl</i> 27 Oct	<i>hed:</i> ober, 2006
This document was published under the authority of the NSAI and co 24 November, 2006	omes into effect on:		ICS number: 31.260
NSAI T +353 1 Swift Square, F +353 Northwood, Santry E stan Dublin 9 W N	8 1 807 3800 Sales: 3 1 807 3838 T +353 1 8 dards@nsai.ie F +353 1 8 W standar SAI.ie	357 6730 357 6729 ds.ie	
Údarás um Chaighdeáin Náisiúnta na hÉireann			

EUROPEAN STANDARD NORME EUROPÉENNE

EN 60825-4/A2

EUROPÄISCHE NORM

May 2011

ICS 31.260

English version

Safety of laser products -Part 4: Laser guards (IEC 60825-4:2006/A2:2011)

Sécurité des appareils à laser -Partie 4: Protecteurs pour lasers (CEI 60825-4:2006/A2:2011) Sicherheit von Lasereinrichtungen -Teil 4: Laserschutzwände (IEC 60825-4:2006/A2:2011)

This amendment A2 modifies the European Standard EN 60825-4:2006; it was approved by CENELEC on 2011-05-03. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this amendment the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Central Secretariat or to any CENELEC member.

This amendment exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the Central Secretariat has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and the United Kingdom.

CENELEC

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

Management Centre: Avenue Marnix 17, B - 1000 Brussels

© 2011 CENELEC - All rights of exploitation in any form and by any means reserved worldwide for CENELEC members.

- 2 -

Foreword

The text of document 76/428/CDV, future amendment 2 to IEC 60825-4:2006, prepared by IEC TC 76, Optical radiation safety and laser equipment, was submitted to the IEC-CENELEC parallel vote and was approved by CENELEC as amendment A2 to EN 60825-4:2006 on 2011-05-03.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN and CENELEC shall not be held responsible for identifying any or all such patent rights.

The following dates were fixed:

-	latest date by which the amendment has to be implemented at national level by publication of an identical national standard or by endorsement	(dop)	2012-02-03
_	latest date by which the national standards conflicting with the amendment have to be withdrawn	(dow)	2014-05-03

Endorsement notice

The text of amendment 2:2011 to the International Standard IEC 60825-4:2006 was approved by CENELEC as an amendment to the European Standard without any modification.

EUROPEAN STANDARD NORME FUROPÉENNE

EN 60825-4/A1

EUROPÄISCHE NORM

October 2008

ICS 31.260

English version

Safety of laser products -Part 4: Laser guards (IEC 60825-4:2006/A1:2008)

Sécurité des appareils à laser -Partie 4: Protecteurs pour lasers (CEI 60825-4:2006/A1:2008)

Sicherheit von Lasereinrichtungen -Teil 4: Laserschutzwände (IEC 60825-4:2006/A1:2008)

This amendment A1 modifies the European Standard EN 60825-4:2006; it was approved by CENELEC on 2008-09-01. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this amendment the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Central Secretariat or to any CENELEC member.

This amendment exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the Central Secretariat has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and the United Kingdom.

CENELEC

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

Central Secretariat: rue de Stassart 35, B - 1050 Brussels

© 2008 CENELEC -All rights of exploitation in any form and by any means reserved worldwide for CENELEC members.

EN 60825-4:2006/A1:2008

- 2 -

Foreword

The text of document 76/383/FDIS, future amendment 1 to IEC 60825-4:2006, prepared by IEC TC 76, Optical radiation safety and laser equipment, was submitted to the IEC-CENELEC parallel vote and was approved by CENELEC as amendment A1 to EN 60825-4:2006 on 2008-09-01.

The following dates were fixed:

_	latest date by which the amendment has to be implemented at national level by publication of an identical national standard or by endorsement	(dop)	2009-06-01
_	latest date by which the national standards conflicting with the amendment have to be withdrawn	(dow)	2011-09-01

Annex ZA has been added by CENELEC.

Endorsement notice

The text of amendment 1:2008 to the International Standard IEC 60825-4:2006 was approved by CENELEC as an amendment to the European Standard without any modification.

- 3 -

Replace Annex ZA of EN 60825-4:2006 by:

Annex ZA

(normative)

Normative references to international publications with their corresponding European publications

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE When an international publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

Publication	Year	Title	<u>EN/HD</u>	Year
IEC 60825-1	2007	Safety of laser products - Part 1: Equipment classification and requirements	EN 60825-1	2007
ISO 11553-1	2005	Safety of machinery - Laser processing machines - Part 1: General safety requirements	EN ISO 11553-1	2005
ISO 12100-1	2003	Safety of machinery - Basic concepts, general principles for design - Part 1: Basic terminology, methodology	EN ISO 12100-1	2003
ISO 12100-2	2003	Safety of machinery - Basic concepts, general principles for design - Part 2: Technical principles	EN ISO 12100-2	2003
ISO 13849-1	2006	Safety of machinery - Safety-related parts of control systems - Part 1: General principles for design	EN ISO 13849-1	2008
ISO 14121-1	2007	Safety of machinery - Risk assessment - Part 1: Principles	EN ISO 14121-1	2007

This page is intentionally left BLANK.

EUROPEAN STANDARD

EN 60825-4

NORME EUROPÉENNE EUROPÄISCHE NORM

ICS 31.260

October 2006

Supersedes EN 60825-4:1997 + A1:2002 + A2:2003

English version

Safety of laser products Part 4: Laser guards (IEC 60825-4:2006)

Sécurité des appareils à laser Partie 4: Protecteurs pour lasers (CEI 60825-4:2006) Sicherheit von Lasereinrichtungen Teil 4: Laserschutzwände (IEC 60825-4:2006)

This European Standard was approved by CENELEC on 2006-10-01. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Central Secretariat or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the Central Secretariat has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and the United Kingdom.

CENELEC

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

Central Secretariat: rue de Stassart 35, B - 1050 Brussels

© 2006 CENELEC - All rights of exploitation in any form and by any means reserved worldwide for CENELEC members.

EN 60825-4:2006

- 2 -

Foreword

The text of document 76/342/FDIS, future edition 2 of IEC 60825-4, prepared by IEC TC 76, Optical radiation safety and laser equipment, was submitted to the IEC-CENELEC parallel vote and was approved by CENELEC as EN 60825-4 on 2006-10-01.

This European Standard supersedes EN 60825-4:1997 + A1:2002 + A2:2003.

The following dates were fixed:

-	latest date by which the EN has to be implemented at national level by publication of an identical national standard or by endorsement	(dop)	2007-07-01
-	latest date by which the national standards conflicting with the EN have to be withdrawn	(dow)	2009-10-01

Annex ZA has been added by CENELEC.

Endorsement notice

The text of the International Standard IEC 60825-4:2006 was approved by CENELEC as a European Standard without any modification.

In the official version, for Bibliography, the following notes have to be added for the standards indicated:

IEC 60204-1	NOTE	Harmonized as EN 60204-1:2006 (modified).
IEC 61310-3	NOTE	Harmonized as EN 61310-3:1999 (not modified).
IEC 61496-2	NOTE	Harmonized as CLC/TS 61496-2:2006 (not modified).
IEC/TS 62046	NOTE	Harmonized as CLC/TS 62046:2005 (not modified).
ISO 10218	NOTE	Harmonized as EN 775:1992 (modified).

- 3 -

EN 60825-4:2006

Annex ZA

(normative)

Normative references to international publications with their corresponding European publications

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE When an international publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

Publication	Year	<u>Title</u>	<u>EN/HD</u>	<u>Year</u>
IEC 60825-1	1993	Safety of laser products Part 1: Equipment classification,	EN 60825-1 + corr. February	1994 1995
A1 A2	1997 2001	requirements and user's guide	A1 A2 + corr. April	2002 2001 2004
ISO 11553-1	2005	Safety of machinery - Laser processing machines Part 1: General safety requirements	EN ISO 11553-1	2005
ISO 12100-1	2003	Safety of machinery - Basic concepts, general principles for design Part 1: Basic terminology, methodology	EN ISO 12100-1	2003
ISO 12100-2	2003	Safety of machinery - Basic concepts, general principles for design Part 2: Technical principles	EN ISO 12100-2	2003

This page is intentionally left BLANK.

CONTENTS

FOREWORD						
IN	INTRODUCTION					
1	Scope	7				
2	Normative references	7				
3	Definitions	7				
4	Laser processing machines	9				
•	4.1 Design requirements	9				
	4.2 Performance requirements					
	4.3 Validation	10				
	4.4 User information	11				
5	Proprietary laser guards	11				
	5.1 Design requirements	11				
	5.2 Performance requirements	11				
	5.3 Specification requirements	11				
	5.4 Test requirements	12				
	5.5 Labelling requirements	12				
	5.6 User information	13				
-						
Ar	inex A (informative) General guidance on the design and selection of laser guards	14				
Ar	inex B (informative) Assessment of foreseeable exposure limit (FEL)	16				
Ar	inex C (informative) Elaboration of defined terms	23				
Ar	nex D (normative) Proprietary laser guard testing	25				
Ar	nex E (informative) Guidelines on the arrangement and installation of laser guards	27				
Ar	nex F (informative) Guideline for assessing the suitability of laser guards	37				
Ar	nex G (normative) Beam delivery systems	64				
Bi	bliography	73				
Fig	gure B.1 – Calculation of diffuse reflections	17				
Fig	gure B.2 – Calculation of specular reflections	17				
Fig	gure B.3 – Some examples of a foreseeable fault condition	18				
Fi	Figure B.4 – Four examples of errant laser beams that might have to be contained by a					
te	nporary guard under service conditions	19				
Fi	gure B.5 – Illustration of laser guard exposure during repetitive machine operation	20				
Fi	gure B.6 – Two examples of assessed duration of exposure	21				
Fi	gure B.7 – Assessed duration of exposure for a machine with no safety monitoring	22				
Fig	gure C.1 – Illustration of guarding around a laser processing machine	23				
Fi	gure C.2 – Illustration of active laser guard parameters	24				
Fie	gure D.1 – Simplified diagram of the test arrangement	26				
Fig	gure F.1 – Damage resistance of 1 mm thick zinc coated steel sheet derived from	53				
	To a exposure to a detocused beam during experiments using a GW GO_2 laser					
10	100 s exposure to a defocused beam during experiments using a CW CO_2 laser					

60825-4 © IEC:2006+A1:2008

- 3 -

Figure F.3 – Damage resistance of 2 mm thick zinc coated steel sheet derived from 10 s exposure to a defocused beam during experiments using a CW CO_2 laser	54
Figure F.4 – Damage resistance of 2 mm thick zinc coated steel sheet derived from 100 s exposure to a defocused beam during experiments using a CW CO_2 laser	54
Figure F.5 – Damage resistance of 3 mm thick zinc coated steel sheet derived from 10 s exposure to a defocused beam during experiments using a CW CO_2 laser	55
Figure F.6 – Damage resistance of 3 mm thick zinc coated steel sheet derived from 100 s exposure to a defocused beam during experiments using a CW CO_2 laser	55
Figure F.7 – Damage resistance of 2 mm thick aluminium sheet derived from 10 s exposure to a defocused beam during experiments using a CW CO_2 laser	56
Figure F.8 – Damage resistance of 2 mm thick aluminium sheet derived from 100 s exposure to a defocused beam during experiments using a CW CO_2 laser	56
Figure F.9 – Damage resistance of 1 mm thick stainless steel sheet derived from 10 s exposure to a defocused beam during experiments using a CW CO_2 laser	57
Figure F.10 – Damage resistance of 1 mm thick stainless steel sheet derived from 100 s exposure to a defocused beam during experiments using a CW CO ₂ laser	57
Figure F.11 – Damage resistance of 6 mm thick polycarbonate sheet derived from 10 s exposure to a defocused beam during experiments using a CW CO_2 laser	58
Figure F.12 – Damage resistance of 6 mm thick polycarbonate sheet derived from 100 s exposure to a defocused beam during experiments using a CW CO ₂ laser	58
Figure F.13 – Damage resistance of 1 mm thick zinc coated steel sheet derived from 10 s exposure to a defocused beam during experiments using a CW Nd:YAG laser	59
Figure F.14 – Damage resistance of 1 mm thick zinc coated steel sheet derived from 100 s exposure to a defocused beam during experiments using a CW Nd:YAG laser	59
Figure F.15 – Damage resistance of 2 mm thick zinc coated steel sheet derived from 10 s exposure to a defocused beam during experiments using a CW Nd:YAG laser	60
Figure F.16 – Damage resistance of 2 mm thick zinc coated steel sheet derived from 100 s exposure to a defocused beam during experiments using a CW Nd:YAG laser	60
Figure F.17 – Damage resistance of 3 mm thick zinc coated steel sheet derived from 10 s exposure to a defocused beam during experiments using a CW Nd:YAG laser	61
Figure F.18 – Damage resistance of 3 mm thick zinc coated steel sheet derived from 100 s exposure to a defocused beam during experiments using a CW Nd:YAG laser	61
Figure F.19 – Damage resistance of 2 mm thick aluminium sheet derived from 10 s exposure to a defocused beam during experiments using a CW Nd:YAG laser	62
Figure F.20 – Damage resistance of 2 mm thick aluminium sheet derived from 100 s exposure to a defocused beam during experiments using a CW Nd:YAG laser	62
Figure F.21 – Damage resistance of 1 mm thick stainless steel sheet derived from 10 s exposure to a defocused beam during experiments using a CW Nd:YAG laser	63
Figure F.22 – Damage resistance of 1 mm thick stainless steel sheet derived from 100 s exposure to a defocused beam during experiments using a CW Nd:YAG laser	63
Table D.1 – Laser guard classification	26
Table F.1 – Application of ALARP	40
Table G.1 – Beam delivery systems using free space beam delivery systems	69
Table G.2 – Beam delivery systems using fibre optic cables	71

- 4 -

INTERNATIONAL ELECTROTECHNICAL COMMISSION

SAFETY OF LASER PRODUCTS -

Part 4: Laser guards

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 60825-4 has been prepared by IEC technical committee 76: Optical radiation safety and laser equipment.

This consolidated version of IEC 60825-4 consists of the second edition (2006) [documents 76/342/FDIS and 76/351/RVD] and its amendment 1 (2008) [documents 76/383/FDIS and 76/385/RVD].

The technical content is therefore identical to the base edition and its amendment and has been prepared for user convenience.

It bears the edition number 2.1.

A vertical line in the margin shows where the base publication has been modified by amendment 1.

60825-4 © IEC:2006+A1:2008 - 5 -

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of the base publication and its amendments will remain unchanged until the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

60825-4 © IEC:2006+A1:2008

INTRODUCTION

- 6 -

At low levels of irradiance or radiant exposure, the selection of material and thickness for shielding against laser radiation is determined primarily by a need to provide sufficient optical attenuation. However, at higher levels, an additional consideration is the ability of the laser radiation to remove guard material – typically by melting, oxidation or ablation; processes that could lead to laser radiation penetrating a normally opaque material.

IEC 60825-1 deals with basic issues concerning laser guards, including human access, interlocking and labelling, and gives general guidance on the design of protective housings and enclosures for high-power lasers.

This part of IEC 60825 deals with protection against laser radiation only. Hazards from secondary radiation that may arise during material processing are not addressed.

Laser guards may also comply with standards for laser protective eyewear, but such compliance is not necessarily sufficient to satisfy the requirements of this standard.

Where the term "irradiance" is used, the expression "irradiance or radiant exposure, as appropriate" is implied.

60825-4 © IEC:2006+A1:2008

- 7 -

SAFETY OF LASER PRODUCTS -

Part 4: Laser guards

1 Scope

This part of IEC 60825 specifies the requirements for laser guards, permanent and temporary (for example for service), that enclose the process zone of a laser processing machine, and specifications for proprietary laser guards.

This standard applies to all component parts of a guard including clear (visibly transmitting) screens and viewing windows, panels, laser curtains and walls. Requirements for beam path components, beam stops and those other parts of a protective housing of a laser product which do not enclose the process zone are contained in IEC 60825-1.

In addition this part of IEC 60825 indicates:

- a) how to assess and specify the protective properties of a laser guard; and
- b) how to select a laser guard.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60825-1:2007, Safety of laser products – Part 1: Equipment classification and requirements

ISO 11553-1:2005, Safety of machinery – Laser processing machines – Safety requirements

ISO 12100-1:2003, Safety of machinery – Basic concepts, general principles for design – Part 1: Basic terminology, methodology

ISO 12100-2:2003, Safety of machinery – Basic concepts, general principles for design – Part 2: Technical principles and specifications

ISO 13849-1:2006, Safety of machinery – Safety-related parts of control systems – Part 1: General principles for design

ISO 14121-1:2007, Safety of machinery – Risk assessment – Part 1: Principles

3 Definitions

For the purpose of this part of IEC 60825, the following definitions apply in addition to the definitions given in IEC 60825-1.

This is a free preview. Purchase the entire publication at the link below:

Product Page

S Looking for additional Standards? Visit Intertek Inform Infostore

> Learn about LexConnect, All Jurisdictions, Standards referenced in Australian legislation