Irish Standard I.S. EN 13001-3-2:2014 Cranes - General design - Part 3-2: Limit states and proof of competence of wire ropes in reeving systems © CEN 2014 No copying without NSAI permission except as permitted by copyright law. #### I.S. EN 13001-3-2:2014 Incorporating amendments/corrigenda/National Annexes issued since publication: The National Standards Authority of Ireland (NSAI) produces the following categories of formal documents: I.S. xxx: Irish Standard — national specification based on the consensus of an expert panel and subject to public consultation. S.R.~xxx: Standard~Recommendation-recommendation~based~on~the~consensus~of~an~expert~panel~and~subject~to~public~consultation. SWiFT xxx: A rapidly developed recommendatory document based on the consensus of the participants of an NSAI workshop. This document replaces/revises/consolidates the NSAI adoption of the document(s) indicated on the CEN/CENELEC cover/Foreword and the following National document(s): NOTE: The date of any NSAI previous adoption may not match the date of its original CEN/CENELEC document. This document is based on: Published: EN 13001-3-2:2014 2014-08-06 This document was published ICS number: under the authority of the NSAI and comes into effect on: 21.220.20 53.020.20 2014-08-23 NOTE: If blank see CEN/CENELEC cover page NSAI T +353 1 807 3800 Sales: 1 Swift Square, F +353 1 807 3838 T +353 1 857 6730 Northwood, Santry E standards@nsai.ie F +353 1 857 6729 Dublin 9 W NSAl.ie W standards.ie Údarás um Chaighdeáin Náisiúnta na hÉireann **EUROPEAN STANDARD** EN 13001-3-2 NORME EUROPÉENNE **EUROPÄISCHE NORM** August 2014 ICS 21.220.20; 53.020.20 Supersedes CEN/TS 13001-3-2:2008 #### **English Version** # Cranes - General design - Part 3-2: Limit states and proof of competence of wire ropes in reeving systems Appareils de levage à charge suspendue - Conception générale - Partie 3-2 : Etats limites et vérification d'aptitude des câbles en acier mouflés Krane - Konstruktion allgemein - Teil 3-2: Grenzzustände und Sicherheitsnachweis von Drahtseilen in Seiltrieben This European Standard was approved by CEN on 14 June 2014. CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions. CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom. EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels | Con | Contents | | |--------------------------|---|----| | Forew | vord | 4 | | Introd | uction | 5 | | | Scope | | | 1 | • | | | 2 | Normative references | 6 | | 3 | Terms, definitions, symbols and abbreviations | 7 | | 3.1 | Terms and definitions | 7 | | 3.2 | Symbols and abbreviations | 7 | | 4 | General | 9 | | 4.1 | Running ropes | | | 4.2 | Stationary ropes | | | 4.3 | Discard criteria | | | 4.4 | Rope and rope terminations | 10 | | 4.5 | Documentation | 10 | | 5 | Proof of static strength | 10 | | 5.1 | General | | | 5.2 | Vertical hoisting | | | 5.2.1 | Design rope force | | | 5.2.2 | Inertial and gravitational effects | | | 5.2.3 | Rope reeving efficiency | | | 5.2.4 | Non parallel falls | | | 5.2.5 | Horizontal forces on the hoist load | 13 | | 5.3 | Non vertical drives | 14 | | 5.3.1 | Design rope force | | | 5.3.2 | Equivalent force | | | 5.3.3 | Inertial effects | | | 5.3.4 | Rope reeving efficiency | | | 5.3.5 | Non parallel falls | | | 5.4 | Limit design rope force | | | 6 | Proof of fatigue strength | 18 | | 6.1 | General | 18 | | 6.2 | Design rope force | | | 6.2.1 | Principle conditions | | | 6.2.2 | Inertial effects | | | 6.2.3 | Non parallel falls | | | 6.2.4 | Horizontal forces in vertical hoisting | | | 6.3 | Limit design rope force | | | 6.3.1
6.3.2 | Basic formula Rope force history parameter | | | 6.3.2 | Rope force spectrum factor | | | 6.3.4 | Rope force spectrum factor | | | 6.3. 4
6.4 | Further influences on the limit design rope force | | | 6.4.1 | Basic formula | | | 6.4.2 | Diameters of drum and sheaves | | | 6.4.3 | Tensile strength of wire | | | 6.4.4 | Fleet angle | | | 615 | Pone Juhrication | 24 | # This is a free page sample. Access the full version online. **I.S. EN 13001-3-2:2014** ## EN 13001-3-2:2014 (E) | 6.4.6 | Groove | 25 | |--------|--|----| | 6.4.7 | Rope types | 25 | | 6.5 | Additional requirements for multilayer drum | | | 7 | Stationary ropes | 27 | | 7.1 | Proof of static strength | | | 7.2 | Proof of fatigue strength | | | Annex | A (normative) Number of relevant bendings | 29 | | Annex | B (informative) Guidance for selection of design number of hoist ropes l_{r} used during the design life of crane | 33 | | Annex | C (informative) Selection of a suitable set of crane standards for a given application | 34 | | Annex | ZA (informative) Relationship between this European Standard and the Essential Requirements of EU Directive 2006/42/EC | 35 | | Biblio | graphy | 36 | | | | | #### **Foreword** This document (EN 13001-3-2:2014) has been prepared by Technical Committee CEN/TC 147 "Crane — Safety", the secretariat of which is held by BSI. This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by February 2015 and conflicting national standards shall be withdrawn at the latest by February 2015. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights. This document supersedes CEN/TS 13001-3-2:2008. CEN/TC 147/WG 2 has reviewed CEN/TS 13001-3-2:2008 to adapt the standard to the technical progress. The major changes in this document are in the following clauses: - 6.3 and 6.5; - there are new issues in Clause 7. The provisions of this standard shall not be mandatory to cranes manufactured within the first 12 months following the date of availability (DAV) of the standard. This document has been prepared under a mandate given to CEN by the European Commission and the European Free Trade Association, and supports essential requirements of EU Directive(s). For relationship with EU Directive(s), see informative Annex ZA, which is an integral part of this document. This European Standard is one Part of EN 13001, Cranes — General design. The other parts are as follows: - Part 1: General principles and requirements - Part 2: Load actions - Part 3-1: Limit states and proof of competence of steel structures - Part 3-3: Limit states and proof of competence of wheel/rail contacts - Part 3-4: Limit states and proof of competence of machinery - Part 3-5: Limit states and proof of competence of forged hooks According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom. #### Introduction This European Standard has been prepared to be a harmonized standard to provide one means for the mechanical design and theoretical verification of cranes to conform to the essential health and safety requirements of the Machinery Directive, as amended. This standard also establishes interfaces between the user (purchaser) and the designer, as well as between the designer and the component manufacturer, in order to form a basis for selecting cranes and components. This European Standard is a type C standard as stated in EN ISO 12100. The machinery concerned and the extent to which hazards, hazardous situations and events are covered are indicated in the scope of this standard. When provisions of this type C standard are different from those which are stated in type A or B standards, the provisions of this type C standard take precedence over the provisions of the other standards, for machines. #### 1 Scope This European Standard is to be used together with EN 13001-1 and EN 13001-2 and as such they specify general conditions, requirements and methods to prevent mechanical hazards of wire ropes of cranes by design and theoretical verification. NOTE Specific requirements for particular types of cranes are given in the appropriate European Standard for the particular crane type. The following is a list of significant hazardous situations and hazardous events that could result in risks to persons during intended use and reasonably foreseeable misuse. Clauses 5 to 6 of this standard are necessary to reduce or eliminate risks associated with the following hazard: exceeding the limits of strength (yield, ultimate, fatigue). This European Standard is not applicable to cranes which are manufactured before the date of its publication as EN and serves as reference base for the European Standards for particular crane types (see Annex C). EN 13001-3-2 deals only with the limit state method in accordance with EN 13001-1. #### 2 Normative references The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. EN 1990:2002, Eurocode — Basis of structural design EN 12385-2, Steel wire ropes — Safety — Part 2: Definitions, designation and classification EN 12385-4, Steel wire ropes — Safety — Part 4: Stranded ropes for general lifting applications EN 13001-1, Cranes — General design — Part 1: General principles and requirements EN 13001-2, Crane safety — General design — Part 2: Load actions EN 13411-1, Terminations for steel wire ropes — Safety — Part 1: Thimbles for steel wire rope slings EN 13411-2, Terminations for steel wire ropes — Safety — Part 2: Splicing of eyes for wire rope slings EN 13411-3, Terminations for steel wire ropes — Safety — Part 3: Ferrules and ferrule-securing EN 13411-4, Terminations for steel wire ropes — Safety — Part 4: Metal and resin socketing EN 13411-6, Terminations for steel wire ropes — Safety — Part 6: Asymmetric wedge socket EN ISO 12100:2010, Safety of machinery — General principles for design — Risk assessment and risk reduction (ISO 12100:2010) ISO 4306-1:2007, Cranes — Vocabulary — Part 1: General ISO 4309, Cranes — Wire ropes — Care and maintenance, inspection and discard | This is a free preview. Purchase the entire publication at the link below | |---| |---| **Product Page** - Dooking for additional Standards? Visit Intertek Inform Infostore - Dearn about LexConnect, All Jurisdictions, Standards referenced in Australian legislation