Irish Standard Recommendation S.R. CEN/TS 16614-1:2014 Public transport - Network and Timetable Exchange (NeTEx) - Part 1: Public transport network topology exchange format © CEN 2014 No copying without NSAI permission except as permitted by copyright law. #### S.R. CEN/TS 16614-1:2014 2014-05-31 | Incorporating amendments/corrigenda/National Annexes issued since publication | |---| |---| The National Standards Authority of Ireland (NSAI) produces the following categories of formal documents: I.S. xxx: Irish Standard — national specification based on the consensus of an expert panel and subject to public consultation. S.R.~xxx: Standard~Recommendation-recommendation~based~on~the~consensus~of~an~expert~panel~and~subject~to~public~consultation. SWiFT~xxx: A~rapidly~developed~recommendatory~document~based~on~the~consensus~of~the~participants~of~an~NSAI~workshop. This document replaces/revises/consolidates the NSAI adoption of the document(s) indicated on the CEN/CENELEC cover/Foreword and the following National document(s): NOTE: The date of any NSAI previous adoption may not match the date of its original CEN/CENELEC document. This document is based on: Published: CEN/TS 16614-1:2014 2014-05-14 This document was published ICS number: under the authority of the NSAI and comes into effect on: 35.240.60 NOTE: If blank see CEN/CENELEC cover page NSAI T +353 1 807 3800 Sales: 1 Swift Square, F +353 1 807 3838 T +353 1 857 6730 Northwood, Santry E standards@nsai.ie F +353 1 857 6729 Dublin 9 W NSAI.ie W standards.ie Údarás um Chaighdeáin Náisiúnta na hÉireann # This is a free page sample. Access the full version online. S.R. CEN/TS 16614-1:2014 TECHNICAL SPECIFICATION **CEN/TS 16614-1** SPÉCIFICATION TECHNIQUE TECHNISCHE SPEZIFIKATION May 2014 ICS 35.240.60 #### **English Version** # Public transport - Network and Timetable Exchange (NeTEx) - Part 1: Public transport network topology exchange format Transport Public - Échanges des informations planifiées (NeTEx) - Partie 1: Topologie du réseau Öffentlicher Verkehr - Netzwerk und Fahrplan Austausch (NeTEx) - Teil 1: Öffentlicher Verkehr Netzwerk Topologie This Technical Specification (CEN/TS) was approved by CEN on 12 November 2013 for provisional application. The period of validity of this CEN/TS is limited initially to three years. After two years the members of CEN will be requested to submit their comments, particularly on the question whether the CEN/TS can be converted into a European Standard. CEN members are required to announce the existence of this CEN/TS in the same way as for an EN and to make the CEN/TS available promptly at national level in an appropriate form. It is permissible to keep conflicting national standards in force (in parallel to the CEN/TS) until the final decision about the possible conversion of the CEN/TS into an EN is reached. CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom. EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels # **Contents** | Forewo | ord | 6 | | |-------------------|---|-----|--| | Introdu | itroduction | | | | 4 | Scope | | | | י
1.1 | General | | | | 1.2 | Transport modes | | | | 1.3 | Compatibility with existing standards and recommendations | | | | 2 | Normative references | | | | 2 | | | | | 3 | Terms and definitions | | | | 4 | Symbols and abbreviations | | | | 5 | Use Cases for Network Topology Exchange | | | | 5.1 | Purpose | | | | 5.2
5.2.1 | Actors and Use Case Types | | | | 5.2.1
5.2.2 | Delivery Use Cases | | | | 5.2.2
5.2.3 | Content Use Cases | | | | 5.2.3
5.2.4 | Object Lifecycle Support Use Cases | | | | 5.2. 5 | Security Use Cases | | | | 5.2.6 | Excluded Use Cases | | | | 5.3 | Use Cases | _ | | | 5.3.1 | Requirements Table | | | | 5.3.2 | Collection of Use Cases | | | | 6 | Generic Physical Model and XSD mapping rules | 105 | | | 6.1 | Introduction | 105 | | | 6.2 | Model Driven Design | 105 | | | 6.3 | Models – levels of abstraction | 107 | | | 6.4 | Open Implementation and technology use | 108 | | | 6.5 | Models versus Protocols | | | | 6.6 | Modularisation | | | | 6.7 | Summary of Modelling Approach | | | | 6.7.1 | Use of packages in NeTEx models | | | | 6.8 | Model transforms and Traceability | | | | 6.8.1 | Conceptual Model UML Package | | | | 6.8.2 | Physical Model UML Container Packages and Mapping from Conceptual model | | | | 6.8.3 | XSD Model subschemas and Mapping from Physical model | | | | 6.8.4
6.9 | Summary of Basic MappingPhysical model to XSD schema mapping notes | | | | 6.10 | Uniqueness of reference and Namespaces | | | | 6.11 | Handling of inheritance | | | | 6.12 | NeTEx Notation, presentation and naming conventions | | | | 6.12.1 | Presentation of Element Names | | | | 6.12.2 | Naming conventions | | | | 6.12.3 | Presentation of Diagrams | | | | 6.12.4 | Use of Colour | | | | 6.13 | Mapping between models in NeTEx | | | | 6.13.1 | Common Design Patterns in NeTEx | | | | 6.13.2 | Mapping Example - Thing Model | | | | 6.13.3 | Mapping Example – Handling Inheritance the SubThing Model | 127 | | | 7 | NeTEx Framework - Conceptual and Physical data model | 131 | | | 7.1 | Introduction | | | | | | | | | 7.2 | Implementing Transmodel framework features in NeTEx | | |---------------------------|---|------| | 7.3 | Versions & Validity | .133 | | 7.3.1 | Introduction | .133 | | 7.3.2 | Version & Validity - Model Dependencies | .134 | | 7.3.3 | Generic Entity | .135 | | 7.3.4 | Generic Version | | | 7.3.5 | Implementing relationships in NeTEx | | | 7.3.6 | Generic Version Frame | | | 7.3.7 | Generic Validity | | | 7.4 | Responsibility | | | 7.4.1 | Introduction | | | 7.4.2 | Responsibility – Model Dependencies | | | 7.4.3 | Generic Responsibility | | | 7.4.4 | Responsibility Role | | | 7.4.5 | Generic Organisation | | | 7. 4 .5
7.5 | Generic Frames | | | 7.5
7.5.1 | Composite Frame | | | 7.5.1
7.5.2 | General Frame | | | 7.5.2
7.6 | General Frame Generic Framework Model | | | - | | | | 7.6.1 | Generic Framework – Model Dependencies | | | 7.6.2 | Unit & Utility Base Types | | | 7.6.3 | Location Model | | | 7.6.4 | Generic Grouping | | | 7.6.5 | Generic Point & Link | | | 7.6.6 | Common Section | | | 7.6.7 | Generic Point & Link Sequence | | | 7.6.8 | Generic Zone and Feature | | | 7.6.9 | Generic Projection | | | 7.6.10 | Generic Place | | | 7.6.11 | Accessibility | | | 7.7 | Reusable Components | | | 7.7.1 | Reusable Components - Model Dependencies | .338 | | 7.7.2 | Resource Frame | .340 | | 7.7.3 | Transport Mode | .343 | | 7.7.4 | Transport SubMode | .349 | | 7.7.5 | Service Calendar | .357 | | 7.7.6 | Availability Condition | .381 | | 7.7.7 | Topographic Place | .385 | | 7.7.8 | Transport Organisations | | | 7.7.9 | Generic Equipment | | | | Additional Organisations | | | | Vehicle Type | | | | Actual Vehicle Equipment | | | | Vehicle Passenger Equipment | | | | Facility | | | | Access Rights | | | _ | Train | | | | Schematic Map | | | 7.7.18 | | | | _ | | | | 8 | Part 1 – The Network Topology | | | 8.1 | Network Description - Model dependencies | .522 | | 8.2 | Infrastructure Frame | .523 | | 8.2.1 | Infrastructure Frame - Conceptual MODEL | .523 | | 8.2.2 | Infrastructure Frame- Physical Model | .524 | | 8.3 | Service Frame | | | 8.3.1 | Service Frame - Conceptual MODEL | | | | • | | | 8.3.2 | Service Frame - Physical Model | 527 | |----------------|---|-----| | 8.4 | Network Description - Subsystem | 530 | | 8.4.1 | Network Infrastructure | 530 | | 8.4.2 | Network Restriction | 540 | | 8.4.3 | Activation | 549 | | 8.4.4 | Vehicle & Crew Point | | | 8.4.5 | Lines and Routes | 561 | | 8.4.6 | Line Network | | | 8.4.7 | Timing Pattern | | | 8.4.8 | Flexible Network | | | 8.5 | Fixed Object – Subsystem | | | 8.5.1 | Fixed Objects - Model Dependencies | | | 8.5.2 | Site Frame | | | 8.5.3 | Site | | | 8.5.4 | Stop Place | | | 8.5.5 | Flexible Stop Place | | | 8.5.6 | Point Of Interest | | | 8.5.7 | Associating Equipment with Places | | | 8.5.8 | Equipment Description | | | 8.5.9 | Path Links | | | 8.5.10 | Navigation Paths | | | 8.5.10 | Check Constraint | | | 8.5.12 | Parking | | | 8.5.12 | Vehicle Stopping | | | 8.5.14 | Connections & Transfer times | | | | Passenger Information Equipment | | | | | | | | Accessibility Coverage | | | 8.5.17 | Accessibility Coverage of Paths | | | 8.6 | Tactical Planning Components – Subsystem | | | 8.6.1 | Tactical Planning – Model Dependencies | | | 8.6.2 | Journey Pattern | | | 8.6.3 | Service Pattern | | | 8.6.4 | Routing Constraints | | | 8.6.5 | Time Demand Type | | | 8.6.6 | Passenger Stop Assignment | | | 8.6.7 | Train Stop Assignment | | | 8.6.8 | Path Assignment | 955 | | 9 | NeTEx Service Interface | 958 | | 9.1 | Introduction | | | 9.2 | Protocols versus payload | | | 9.3 | NeTEx Publication XSD schema | | | 9.3.1 | NeTEx PublicationDelivery | | | 9.3.2 | Publication Request – Service Element | | | 9.3.3 | Frame Request Topics Filter | | | 9.3.4 | Frame Request Policy | | | 9.4 | NeTEx SIRI-NX services XSD schema | | | 9.4.1 | Brief overview of SIRI communication layer | | | 9.4.2 | SIRI ServiceRequest wrapper | | | 9.4.2
9.4.3 | SIRI ServiceDelivery | | | 9.4.3
9.4.4 | Data Object Service [SIRI-NX] | | | 9.4.4
9.5 | Use of NeTEx with SOAP / WSDL | | | ອ.ວ
9.5.1 | Web Services | | | 9.5.1
9.5.2 | SOAP (Simple Object Access Protocol) | | | 9.5.∠
9.5.3 | | | | | WSDL (Web Services Definition Language) | | | 9.5.4 | NeTEx WSDL | | | Annex | A (informative) Mapping with existing standards | 990 | | | = | | # This is a free page sample. Access the full version online. S.R. CEN/TS 16614-1:2014 ### CEN/TS 16614-1:2014 (E) | A.1 | Introduction | 990 | |---------|---|------| | A.2 | VDV 452 Mapping | 994 | | A.3 | NOPTIS Mapping | 994 | | A.4 | NEPTUNE (Trident /Chouette profile) | 995 | | A.4.1 | Foreword | 995 | | A.4.2 | NEPTUNE | 995 | | A.4.3 | NEPTUNE to NeTEx mapping information | 996 | | A.5 | ERA mapping | 997 | | A.5.1 | Foreword | 997 | | A.5.2 | Explanation of the mapping | 998 | | A.5.2.1 | Structure of mapping excel-file | 998 | | A.5.2.2 | Hierarchy of EDIFACT | 998 | | A.5.2.2 | 1 Explanation of the mapping | 998 | | A.5.3 | Limitations | 999 | | A.6 | TransXChange, NaPTAN & NPTG mappings | 1000 | | A.6.1 | Foreword | 1000 | | A.6.2 | TransXChange to NeTEx mapping information | 1000 | | Bibliog | raphy | 1001 | #### **Foreword** This document (CEN/TS 16614-1:2014) has been prepared by Technical Committee CEN/TC 278 "Intelligent transport systems", the secretariat of which is held by NEN. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights. This document presents Part 1 of the European Technical Specification known as "NeTEx". NeTEx provides a framework for specifying communications and data exchange protocols for organisations wishing to exchange scheduled Information relating to public transport operations. This technical specification is made up of three parts defining a single European Standard series, which provides a complete exchange format for public transport networks, timetable description and fare information. - Part 1 is the description of the public transport network topology exchange format. It also contains use cases shared with part 2, and modelling rules and the description of a framework shared by all parts. - Part 2 is the description of the scheduled timetables exchange format. - Part 3 is the description of the fare information exchange format.¹ Part 1 is fully standalone, and part 2 and 3 rely on part 1. The XML schema can be downloaded from www.**netex**.org.uk, along with available guidance on its use, example XML files, and case studies of national and local deployments. NOTE This document is higly technical, and a special care has been taken on keeping the text readable. This has been done through a set of editorial rules enhancing usual CEN writing rules: - To avoid confusion with usual wording, Transmodel terms are in capital letters (JOURNEY PATTERN for example). - To avoid confusion with usual wording, attributes names are in bold/italic style and use camelcase style with no spaces (*JourneyPattern* for example). - To avoid confusion with usual wording, attributes types are in italic style and use camelcase style with no spaces (*TypeOfEntity* for example). According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following countries are bound to announce this Technical Specification: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom. - ¹ Currently under development #### Introduction Public transport services rely increasingly on information systems to ensure reliable, efficient operation and widely accessible, accurate passenger information. These systems are used for a range of specific purposes: setting schedules and timetables; managing vehicle fleets; issuing tickets and receipts; providing real-time information on service running, and so on. This European Technical Specification specifies a Network and Timetable Exchange (NeTEx) standard for Public Transport. It is intended to be used to exchange data relating to scheduled public transport between the systems of PT organisations. It can also be seen as complementary to the SIRI (Service Interface for Real-time Information) standard, as SIRI needs a prior exchange of reference data from NeTEx's scope to provide the necessary context for the subsequent exchange of a real-time data. Well-defined, open interfaces have a crucial role in improving the economic and technical viability of Public Transport Information Systems of all kinds. Using standardised interfaces, systems can be implemented as discrete pluggable modules that can be chosen from a wide variety of suppliers in a competitive market, rather than as monolithic proprietary systems from a single supplier. Interfaces also allow the systematic automated testing of each functional module, vital for managing the complexity of increasing large and dynamic systems. Furthermore, individual functional modules can be replaced or evolved, without unexpected breakages of obscurely dependent function. This standard will improve a number of features of public transport information and service management: Interoperability – the standard will facilitate interoperability between information processing systems of the transport operators by: (i) introducing common architectures for message exchange; (ii) introducing a modular set of compatible information services for real-time vehicle information; (iii) using common data models and schemas for the messages exchanged for each service; and (iv) introducing a consistent approach to data management. Technical advantages include the following: a modular reusing of a common communication layer shared with SIRI for all the various technical services enables cost-effective implementations, and makes the standard readily extensible in future. #### 1 Scope #### 1.1 General NeTEx is dedicated to the exchange of scheduled data (network, timetable and fare information). It is based on Transmodel V5.1 (EN 12896), IFOPT (EN 28701) and SIRI (CEN/TS 15531-4, CEN/TS 15531-5 and prEN 15531-1, prEN 15531-2 and prEN 15531-3²) and supports the exchange of information of relevance for passenger information about public transport services and also for running Automated Vehicle Monitoring Systems (AVMS). NOTE Many NeTEx concepts are taken directly from Transmodel and IFOPT; the definitions and explanation of these concepts are extracted directly from the respective standard and reused in NeTEx, sometimes with adaptions in order to fit the NeTEx context. Although the data exchanges targeted by NeTEx are predominantly oriented towards provisioning passenger information systems and AVMS with data from transit scheduling systems, it is not restricted to this purpose and NeTEx can also provide an effective solution to many other use cases for transport data exchange. #### 1.2 Transport modes All mass public transport modes are taken into account by NeTEx, including train, bus, coach, metro, tramway, ferry, and their submodes. It is possible to describe airports and air journeys, but there has not been any specific consideration of any additional requirements that apply specifically to air transport. #### 1.3 Compatibility with existing standards and recommendations Concepts covered in NeTEx that relate in particular to long-distance train travel include; rail operators and related organizations; stations and related equipment; journey coupling and journey parts; train composition and facilities; planned passing times; timetable versions and validity conditions. In the case of long distance train the NeTEx takes into account the requirements formulated by the ERA (European Rail Agency) – TAP/TSI (Telematics Applications for Passenger/ Technical Specification for Interoperability, entered into force on 13 May 2011 as the Commission Regulation (EU) No 454/2011), based on UIC directives. As regards the other exchange protocols, a formal compatibility is ensured with TransXChange (UK), VDV 452 (Germany), NEPTUNE (France), UIC Leaflet, BISON (Netherland) and NOPTIS (Nordic Public Transport Interface Standard). The data exchange is possible either through dedicated web services, through data file exchanges, or using the SIRI exchange protocol as described in part 2 of the SIRI documentation. #### 2 Normative references The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. EN 15531-1, Public transport - Service interface for real-time information relating to public transport operations - Part 1: Context and framework³ ² Under development [•] ³ Under development (WI 00278340) | This is a free preview | Purchase the entire | e publication at the link below: | |------------------------|---|----------------------------------| |------------------------|---|----------------------------------| **Product Page** - Dooking for additional Standards? Visit Intertek Inform Infostore - Dearn about LexConnect, All Jurisdictions, Standards referenced in Australian legislation