

Irish Standard I.S. EN 61643-311:2013

Components for low-voltage surge protective devices -- Part 311: Performance requirements and test circuits for gas discharge tubes (GDT) (IEC 61643-311:2013 (EQV))

© CENELEC 2013 No copying without NSAI permission except as permitted by copyright law.

Incorporating amendments/corrigenda issued since publication:				

The National Standards Authority of Ireland (NSAI) produces the following categories of formal documents:

I.S. xxx: Irish Standard – national specification based on the consensus of an expert panel and subject to public consultation.

S.R. xxx: Standard Recommendation - recommendation based on the consensus of an expert panel and subject to public consultation.

SWiFT xxx: A rapidly developed recommendatory document based on the consensus of the participants of an NSAI workshop.

This document replaces: EN 61643-311:2001 (partially)

This document is based on: EN 61643-311:2013

Published: 9 August, 2013

This document was published

under the authority of the NSAI and comes into effect on:

ICS number: 31.100 33.040.99

15 August, 2013

NSAI T +353 1 807 3800 Sales:

1 Swift Square, F +353 1 807 3838 T +353 1 857 6730 Northwood, Santry E standards@nsai.ie F +353 1 857 6729 Ublin 9 W standards.ie

W NSALie

Údarás um Chaighdeáin Náisiúnta na hÉireann

EUROPEAN STANDARD

EN 61643-311

NORME EUROPÉENNE EUROPÄISCHE NORM

August 2013

ICS 31.100; 33.040.99

Supersedes EN 61643-311:2001 (partially)

English version

Components for low-voltage surge protective devices Part 311: Performance requirements and test circuits for gas discharge tubes (GDT)

(IEC 61643-311:2013)

Composants pour parafoudres basse tension -Partie 311: Exigences de performance et circuits d'essai pour tubes à décharge de gaz (TDG) (CEI 61643-311:2013)

Bauelemente für Überspannungsschutzgeräte für Niederspannung -Teil 311: Leistungsanforderungen sowie Prüfschaltungen und -verfahren für Gasentladungsableiter (ÜsAG) (IEC 61643-311:2013)

This European Standard was approved by CENELEC on 2013-05-16. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

CENELEC

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

Management Centre: Avenue Marnix 17, B - 1000 Brussels

EN 61643-311:2013

- 2 -

Foreword

The text of document 37B/113/FDIS, future edition 2 of IEC 61643-311, prepared by SC 37B, "Specific components for surge arresters and surge protective devices", of IEC TC 37, "Surge arresters" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN 61643-311:2013.

The following dates are fixed:

•	latest date by which the document has to be implemented at national level by publication of an identical national standard or by endorsement	(dop)	2014-02-16
•	latest date by which the national standards conflicting with the document have to be withdrawn	(dow)	2016-05-16

This document partially supersedes EN 61643-311:2001.

EN 61643-311:2013 includes the following significant technical changes with respect to EN 61643-311:2001:

- addition of performance values.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC [and/or CEN] shall not be held responsible for identifying any or all such patent rights.

Endorsement notice

The text of the International Standard IEC 61643-311:2013 was approved by CENELEC as a European Standard without any modification.

In the official version, for Bibliography, the following notes have to be added for the standards indicated:

IEC 60364-5-51:2005	NOTE	Harmonised as HD 60364-5-51:2009 (modified).
IEC 61180-1:1992	NOTE	Harmonised as EN 61180-1:1994 (not modified).
IEC 61643-312	NOTE	Harmonised as EN 61643-312.
IEC 61643-11:2011	NOTE	Harmonised as EN 61643-11:2012 (modified).
IEC 61643-21:2000 + A1:2008	NOTE	Harmonised as EN 61643-21:2001 (not modified) + A1:2009 (modified)

EN 61643-311:2013

Annex ZA (normative)

Normative references to international publications with their corresponding European publications

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE When an international publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

<u>Publication</u>	<u>Year</u>	<u>Title</u>	EN/HD	<u>Year</u>
IEC 60068-2-1	2007	Environmental testing - Part 2-1: Tests - Test A: Cold	EN 60068-2-1	2007
IEC 60068-2-20	2008	Environmental testing - Part 2-20: Tests - Test T: Test methods for solderability and resistance to soldering heat of devices with leads	EN 60068-2-20	2008
IEC 60068-2-21 + corr. January	2006 2012	Environmental testing - Part 2-21: Tests - Test U: Robustness of terminations and integral mounting devices	EN 60068-2-21	2006
IEC 61000-4-5 + corr. October	2005 2009	Electromagnetic compatibility (EMC) - Part 4-5: Testing and measurement techniques - Surge immunity test	EN 61000-4-5	2006
ITU-T Recommendation K.20	2011	Resistibility of telecommunication equipment installed in a telecommunications centre to overvoltages and overcurrents	-	-

This is a free page sample. Access the full version online.

I.S. EN 61643-311:2013

This page is intentionally left BLANK.

-2-

61643-311 © IEC:2013

CONTENTS

FΟ	REWO	DRD		4			
1	Scop	e		6			
2	Norm	native references					
3	Term	s, defin	iitions and symbols	7			
	3.1	Terms	and definitions	7			
	3.2	Symbo	ols	10			
4	Servi	Service conditions					
	4.1	Low te	emperature	10			
	4.2	.2 Air pressure and altitude					
	4.3	·					
	4.4		ve humidity				
5	Mech	anical i	requirements and materials	11			
	5.1	Robus	tness of terminations	11			
	5.2	Solder	ability	11			
	5.3	Radiat	ion	11			
	5.4	Markin	ng	11			
6	Gene	ral		11			
	6.1	Failure	e rates	11			
	6.2	Standa	ard atmospheric conditions	11			
7	Elect	rical red	quirements	12			
	7.1	Gener	al	12			
	7.2 Initial values						
		7.2.1	Sparkover voltages	12			
		7.2.2	Insulation resistance	13			
		7.2.3	Capacitance	13			
		7.2.4	Transverse voltage	13			
		7.2.5	DC holdover	13			
	7.3	Requir	ements after application of load	13			
		7.3.1	General	13			
		7.3.2	Sparkover voltages	14			
		7.3.3	Insulation resistance	14			
		7.3.4	AC follow current	14			
		7.3.5	Fail-short (Failsafe)	15			
8	Test	and me	asurement procedures and circuits	15			
	8.1	3.1 DC sparkover voltage1					
	8.2	Impulse sparkover voltage					
	8.3	Insulat	tion resistance	16			
	8.4	•	itance				
	8.5						
	8.6	· ·					
	8.7		ldover voltage				
		8.7.1	General				
		8.7.2	DC holdover voltage values				
	8.8	-	rements for current-carrying capacity				
		8.8.1	General	22			

61643-311 © IEC:2013

- 3 -

	8.8.2	Nominal alternating discharge current	22
	8.8.3	Nominal impulse discharge current, waveshape 8/20	23
	8.8.4	Life test with impulse currents, waveshape 10/1 000	24
	8.8.5	AC follow current	24
8.9	Fail-sh	ort (failsafe)	25
Bibliogra	phy		27
Figure 1	– Volta	ge and current characteristics of a GDT	8
Figure 2	– Symb	ol for a two-electrode GDT	10
Figure 3	– Symb	ol for a three-electrode GDT	10
Figure 4	– Circu	t for d.c. sparkover voltage test at 100 V/s	15
Figure 5	– Circu	t for impulse sparkover voltage at 1 000 V/µs	16
Figure 6	– Test o	circuit for glow-to-arc transition current, glow voltage and arc voltage	17
		ge-current characteristic of a typical GDT, suitable for measuring for w-to-arc transition current, glow voltage, and arc voltage	18
Figure 8	– Test o	circuit for transverse voltage	19
Figure 9	– Test o	circuit for dc holdover voltage, two-electrode GDTs	20
Figure 10) – Test	circuit for dc holdover voltage, three-electrode GDTs	20
Figure 11	I – Circ	uit for nominal alternating discharge current, two-electrode GDTs	23
Figure 12	2 – Circ	uit for nominal alternating discharge current, three-electrode GDTs	23
Figure 13	3 – Circ	uit for nominal impulse discharge current, two-electrode GDTs	23
Figure 14	4 – Circ	uit for nominal impulse discharge current, three-electrode GDTs	23
Figure 15	5 – Circ	uit for life test with impulse current, two-electrode GDTs	24
Figure 16	6 – Circ	uit for life test with impulse current, three-electrode GDTs	24
Figure 17	7 – Test	circuit for alternating follow current	25
Figure 18	3 – Test	circuit for fail-short (failsafe), two-electrode GDTs	26
Figure 19	9 – Test	circuit for fail-short (failsafe), three-electrode GDTs	26
Table 1 -	- DC an	d impulse sparkover voltage requirements, initial	12
Table 2 -	- Values	of sparkover voltages after the tests of Table 5	14
Table 3 -	- Values	for different d.c. holdover voltage tests for two-electrode GDTs	21
Table 4 -	- Values	s for different d.c. holdover voltage tests for three-electrode GDTs	21
Table 5 -	- Differe	ent classes of current-carrying capacity	22

-4 -

61643-311 © IEC:2013

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMPONENTS FOR LOW-VOLTAGE SURGE PROTECTIVE DEVICES –

Part 311: Performance requirements and test circuits for gas discharge tubes (GDT)

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 61643-311 has been prepared by subcommittee 37B: Specific components for surge arresters and surge protective devices, of IEC technical committee 37: Surge arresters.

This second edition of IEC 61643-311 cancels and replaces the first edition published in 2001. It constitutes a technical revision.

Specific changes with respect to the previous edition are:

Addition of performance values.

61643-311 © IEC:2013

- 5 -

The text of this standard is based on the following documents:

FDIS	Report on voting
37B/113/FDIS	37B/118/RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts of IEC 61643 series, under the general title *Components for low-voltage* surge protective devices can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- · reconfirmed,
- · withdrawn,
- · replaced by a revised edition, or
- amended.

-6-

61643-311 © IEC:2013

COMPONENTS FOR LOW-VOLTAGE SURGE PROTECTIVE DEVICES –

Part 311: Performance requirements and test circuits for gas discharge tubes (GDT)

1 Scope

This part of IEC 61643 is applicable to gas discharge tubes (GDT) used for overvoltage protection in telecommunications, signalling and low-voltage power distribution networks with nominal system voltages up to 1 000 V (r.m.s.) a.c. and 1 500 V d.c.. They are defined as a gap, or several gaps with two or three metal electrodes hermetically sealed so that gas mixture and pressure are under control. They are designed to protect apparatus or personnel, or both, from high transient voltages. This standard contains a series of test criteria, test methods and test circuits for determining the electrical characteristics of GDTs having two or three electrodes. This standard does not specify requirements applicable to complete surge protective devices, nor does it specify total requirements for GDTs employed within electronic devices, where precise coordination between GDT performance and surge protective device withstand capability is highly critical.

This part of IEC 61643

- does not deal with mountings and their effect on GDT characteristics. Characteristics given apply solely to GDTs mounted in the ways described for the tests;
- does not deal with mechanical dimensions;
- does not deal with quality assurance requirements;
- may not be sufficient for GDTs used on high-frequency (>30 MHz);
- does not deal with electrostatic voltages;
- does not deal with hybrid overvoltage protection components or composite GDT devices.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60068-2-1:2007, Environmental testing – Part 2: Tests. Tests A: Cold

IEC 60068-2-20:2008, Environmental testing – Part 2: Tests. Test T: Test methods for solderability and resistance to soldering heat of devices with leads

IEC 60068-2-21:2006, Environmental testing – Part 2-21: Tests – Test U: Robustness of terminations and integral mounting devices

IEC 61000-4-5:2005, Electromagnetic compatibility (EMC) – Part 4: Testing and measurement techniques – Section 5: Surge immunity test

ITU-T Recommendation K.20:2011, Resistibility of telecommunication equipment installed in a telecommunications centre to overvoltages and overcurrents

This is a free preview	 Purchase the entire 	e publication at the link below:
------------------------	---	----------------------------------

Product Page

- Dooking for additional Standards? Visit Intertek Inform Infostore
- Dearn about LexConnect, All Jurisdictions, Standards referenced in Australian legislation