This is a free page sample. Access the full version online.

Irish Standard I.S. EN 60076-14:2013

Power transformers -- Part 14: Liquidimmersed power transformers using high-temperature insulation materials (IEC 60076-14:2013 (EQV))

© CENELEC 2013 No copying without NSAI permission except as permitted by copyright law.

Incorporating amendments/corrigenda issued since publication:

The National Standards Authority of Ireland (NSAI) produces the following categories of formal documents:

I.S. xxx: Irish Standard – national specification based on the consensus of an expert panel and subject to public consultation.

S.R. xxx: Standard Recommendation - recommendation based on the consensus of an expert panel and subject to public consultation.

SWiFT xxx: A rapidly developed recommendatory document based on the consensus of the participants of an NSAI workshop.

<i>This document replaces:</i>	<i>This document is based o</i> EN 60076-14:2013	on: Publisi 25 Oct	<i>hed:</i> ober, 2013
This document was published under the authority of the NSAI and co 31 October, 2013	omes into effect on:		ICS number: 29.180
NSAI T +353 1 807 3800 Sales: 1 Swift Square, F +353 1 807 3838 T +353 1 857 6730 Northwood, Santry E standards@nsai.ie F +353 1 857 6729 Dublin 9 W standards.ie W NSAI.ie			
Údarás um Chaighdeáin Náisiúnta na hÉireann			

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

EN 60076-14

October 2013

ICS 29.180

English version

Power transformers -Part 14: Liquid-immersed power transformers using high-temperature insulation materials (IEC 60076-14:2013)

Transformateurs de puissance -Partie 14: Transformateurs de puissance immergés dans du liquide utilisant des matériaux d'isolation haute température (CEI 60076-14:2013) Leistungstransformatoren -Teil 14: Flüssigkeitsgefüllte Leistungstransformatoren mit Hochtemperatur-Isolierstoffen (IEC 60076-14:2013)

This European Standard was approved by CENELEC on 2013-10-21. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

CENELEC

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

CEN-CENELEC Management Centre: Avenue Marnix 17, B - 1000 Brussels

© 2013 CENELEC - All rights of exploitation in any form and by any means reserved worldwide for CENELEC members.

Ref. No. EN 60076-14:2013 E

EN 60076-14:2013

Foreword

The text of document 14/755/FDIS, future edition 1 of IEC 60076-14, prepared by IEC/TC 14 "Power transformers" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN 60076-14:2013.

The following dates are fixed:

_	latest date by which the document has to be implemented at	(dop)	2014-07-21
	standard or by endorsement		

 latest date by which the national standards conflicting with (dow) 2016-10-21 the document have to be withdrawn

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC [and/or CEN] shall not be held responsible for identifying any or all such patent rights.

Endorsement notice

The text of the International Standard IEC 60076-14:2013 was approved by CENELEC as a European Standard without any modification.

In the official version, for Bibliography, the following notes have to be added for the standards indicated:

IEC 60076-4	NOTE	Harmonized in EN 60076-4.
IEC 60216-1	NOTE	Harmonized as EN 60216-1.
IEC 60317	NOTE	Harmonized in EN 60317 series.
IEC 60422	NOTE	Harmonized as EN 60422.
IEC 60505	NOTE	Harmonized as EN 60505.
IEC 60567	NOTE	Harmonized as EN 60567.
IEC 60599	NOTE	Harmonized as EN 60599.
IEC 60641-3	NOTE	Harmonized in EN 60641-3 series.
IEC 60674-3	NOTE	Harmonized in EN 60674-3 series.
IEC 60819-3	NOTE	Harmonized in EN 60819-3 series.
IEC 60851-4	NOTE	Harmonized as EN 60851-4.
IEC 60867	NOTE	Harmonized as EN 60867.
IEC 60893-3	NOTE	Harmonized in EN 60893-3 series.

- 3 -

IEC 60970	NOTE	Harmonized as EN 60970.
IEC 61039	NOTE	Harmonized as EN 61039.
IEC 61100	NOTE	Harmonized as EN 61100.
IEC 61203	NOTE	Harmonized as EN 61203.
IEC 61212-3	NOTE	Harmonized in EN 61212-3 series.
IEC 61629-1	NOTE	Harmonized as EN 61629-1.

EN 60076-14:2013

I.S. EN 60076-14:2013 - 4 -

Annex ZA

(normative)

Normative references to international publications with their corresponding European publications

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE When an international publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

Publication	Year	Title	<u>EN/HD</u>	Year
IEC 60076-1	-	Power transformers - Part 1: General	EN 60076-1	-
IEC 60076-2	-	Power transformers - Part 2: Temperature rise for liquid- immersed transformers	EN 60076-2	-
IEC 60076-5	-	Power transformers - Part 5: Ability to withstand short circuit	EN 60076-5	-
IEC 60076-7	-	Power transformers - Part 7: Loading guide for oil-immersed power transformers	-	-
IEC 60076-16	-	Power transformers - Part 16: Transformers for wind turbines applications	EN 60076-16	-
IEC 60085	-	Electrical insulation - Thermal evaluation and designation	EN 60085	-
IEC 60137	-	Insulated bushings for alternating voltages above 1 000 V	EN 60137	-
IEC 60214-1	-	Tap-changers - Part 1: Performance requirements and test methods	EN 60214-1	-
IEC 60296	-	Fluids for electrotechnical applications - Unused mineral insulating oils for transformers and switchgear	EN 60296	-
IEC 60836	-	Specifications for unused silicone insulating liquids for electrotechnical purposes	EN 60836	-
IEC 61099	-	Insulating liquids - Specifications for unused synthetic organic esters for electrical purposes	EN 61099	-
IEC 61378-1	-	Convertor transformers - Part 1: Transformers for industrial applications	EN 61378-1	-
IEC 61378-2	-	Convertor transformers - Part 2: Transformers for HVDC applications	EN 61378-2	-

CONTENTS

- 2 -

FOF	REWORD)		5
INT	RODUCT	TION		7
1	Scope			8
2	Normati	ve referen	ces	8
3	Terms a	and definiti	ons	9
4	Insulatio	on systems	5	11
	4.1	General		11
	4.2	Winding i	insulation types	
		4.2.1	General	12
		4.2.2	Summary of winding/system insulation types	13
		4.2.3	Hybrid winding types	13
		4.2.4	High-temperature insulation winding	16
5	Temper	ature rise l	limits	17
	5.1	General		17
	5.2	Thermally	y upgraded paper (TUP)	19
	5.3	Cellulose	used in ester liquid	19
6	Compor	nents and r	materials	19
	6.1	General		19
	6.2	Leads an	d cables	19
7	Special	design cor	nsiderations	20
	7.1	Short-circ	cuit considerations	20
	7.2	Dielectric	requirements	20
	7.3	Temperat	ture requirements	20
	7.4	Overload		22
8	Require	d informati	ion	23
	8.1	Informatio	on to be provided by the purchaser	23
		8.1.1	Ambient temperatures and loading cycle	23
		8.1.2	Other unusual service conditions	23
	8.2	Informatio	on to be provided by the manufacturer	23
		8.2.1	I nermal characteristics	23
0	Dating r	0.2.2		23 22
9				23
	9.1			23
10	9.2 Tost roc	Transion		24
10	10.4	Deutine		
	10.1	Routine, 1	type and special tests	24
	10.2		d compact transformers	24
	10.3	Evaluatio	n of temperature-rise tests for windings with multiple hot-spots	24 24
	10.5	Dielectric	type tests	2 4 26
11	Supervi	sion diagr	nostics and maintenance	20
. 1	11 1	General		2' 07
	11.1	Transform	ners filled with mineral insulating oil	21 27
	11.2	Transform	ners filled with high-temperature insulating liquids	
Ann	iex A (inf	ormative)	Insulation materials	
	·····	/		

60076-14 © IEC:2013	- 3 -
---------------------	-------

Annex B (informative) Rapid temperature increase and bubble generation	35
Annex C (informative) Ester liquid and cellulose	38
Annex D (normative) Insulation system coding	52
Bibliography	55
Figure 1 – Example of semi-hybrid insulation windings	14
Figure 2 – Example of a mixed hybrid insulation winding	15
Figure 3 – Example of full hybrid insulation windings	16
Figure 4 – Example of high-temperature insulation system	17
Figure 5 – Temperature gradient conductor to liquid	21
Figure 6 – Modified temperature diagram for windings with mixed hybrid insulation system	26
Figure A.1 – Example of a thermal endurance graph	29
Figure B.1 – Bubble evolution temperature chart	36
Figure C.1 – Tensile strength ageing results of TUP in mineral oil and natural ester liquid	39
Figure C.2 – Composite tensile strength ageing results of TUP in mineral oil and natural ester liquid	40
Figure C.3 – DP ageing results of TUP in mineral oil and natural ester liquid	41
Figure C.4 – Composite DP ageing results of TUP in mineral oil and natural ester liquid	42
Figure C.5 – Tensile strength ageing results of kraft paper in mineral oil and natural ester liquid	42
Figure C.6 – Composite tensile strength ageing results of kraft paper in mineral oil and natural ester liquid	43
Figure C.7 – DP ageing results of kraft paper in mineral oil and natural ester liquid	43
Figure C.8 – Composite DP ageing results of kraft paper in mineral oil and natural ester liquid	44
Figure C.9 – Infrared spectra of kraft paper aged in liquid at 110 °C for 175 days	46
Figure C.10 – Unit life versus temperature of TUP ageing data (least squares fit)	48
Figure C.11 – Unit life versus temperature of kraft paper ageing data (least squares fit)	48
Table 1 – Preferred insulation system thermal classes	12
Table 2 – Winding/system insulation comparison	13
Table 3 – Maximum continuous temperature rise limits for transformers with hybrid insulation systems	18
Table 4 – Maximum continuous temperature rise limits for transformers with high- temperature insulation systems	19
Table 5 – Suggested maximum overload temperature limits for transformers with hybrid insulation systems	22
Table 6 – Suggested maximum overload temperature limits for transformers with high-temperature insulation systems	22
Table A.1 – Typical properties of solid insulation materials	32
Table A.2 – Typical enamels for wire insulation	33
Table A.3 – Typical performance characteristics of unused insulating liquids	34
Table C.1 – Effect of moisture solubility limits on cellulose moisture reduction	46
Table C.2 – Comparison of ageing results	47

-4-

60076-14 © IEC:2013

Table C.3 – Maximum temperature rise for ester liquid/cellulose insulation systems	49
Table C.4 – Suggested maximum overload temperature limits for ester liquid/cellulose insulation systems	49

60076-14 © IEC:2013

- 5 -

INTERNATIONAL ELECTROTECHNICAL COMMISSION

POWER TRANSFORMERS –

Part 14: Liquid-immersed power transformers using high-temperature insulation materials

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested yin the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 60076-14 has been prepared by IEC technical committee 14: Power transformers.

This first edition of IEC 60076-14 is an International Standard which cancels and replaces the second edition of the Technical Specification IEC/TS 60076-14 published in 2009. It constitutes a technical revision.

This International Standard includes the following significant technical changes with respect to the Technical Specification:

- a) the hot-spot relationship to thermal class is now defined;
- b) a new 140 thermal class is defined;
- c) the number of insulation systems is reduced to only three: conventional, hybrid and high-temperature;

- 6 -

- d) homogeneous high-temperature insulation system has been changed to just high-temperature insulation system;
- e) winding definitions were introduced to define variations in the hybrid insulation system;
- f) the system example drawings have been revised for clarity;
- g) all suggested limits corresponding to Part 7 loading guide have been defined in a similar format;
- h) moisture equilibrium curves for high-temperature materials have been added to the moisture and bubble generation annex;
- i) an annex has been added to introduce the concept of thermal enhancement of cellulose by ester;
- j) some guide information, such as overload temperature limit suggestions was retained, but most of the other informative text was moved into informative annexes.

The text of this standard is based on the following documents:

FDIS	Report on voting
14/755/FDIS	14/759/RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts of the IEC 60076 series can be found, under the general title *Power transformers*, on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

60076-14 © IEC:2013

-7-

INTRODUCTION

This part of IEC 60076 standardizes liquid-immersed transformers that use high-temperature insulation. As a system, the solid insulation may encompass a broad range of materials with varying degrees of thermal capability. The insulating and cooling liquids also vary substantially, ranging from mineral oil to a number of liquids that also have a range of thermal capability.

This international standard is not intended to stand alone, but rather builds on the information and guidelines documented in other parts of the IEC 60076 series. Accordingly, this document follows two guiding principles. The first principle is that liquid-immersed transformers are well known and are well defined in other parts of this series and therefore, the details of these transformers are not repeated in this international standard, except where reference has value, or where repetition is considered appropriate for purposes of emphasis or comparison.

The second principle is that the materials used in normal liquid-immersed transformers, typically kraft paper, pressboard, wood, mineral oil, paint and varnish, which operate within temperature limits given in IEC 60076-2, are well known and are considered normal or conventional. All other insulation materials, either solid or liquid that have a thermal capability higher than the materials used in this well-known system of insulation materials are considered high-temperature. Consequently, this standard or normal insulation system is defined as the "conventional" insulation system for comparison purposes and these normal thermal limits are presented for reference to illustrate the differences between other higher-temperature systems.

This international standard addresses loading, overloading, testing and accessories in the same manner. Only selected information for the "conventional" transformers is included for comparison purposes or for emphasis. All other references are directed to the appropriate IEC document.

- 8 -

60076-14 © IEC:2013

POWER TRANSFORMERS –

Part 14: Liquid-immersed power transformers using high-temperature insulation materials

1 Scope

This part of IEC 60076 applies to liquid-immersed power transformers employing either high-temperature insulation or combinations of high-temperature and conventional insulation, operating at temperatures above conventional limits.

It is applicable to:

- power transformers in accordance with IEC 60076-1;
- convertor transformers according to IEC 61378 series;
- transformers for wind turbine applications in accordance with IEC 60076-16;
- arc furnace transformers;
- reactors in accordance with IEC 60076-6.

This part of IEC 60076 may be applicable as a reference for the use of high-temperature insulation materials in other types of transformers and reactors.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60076-1, Power transformers – Part 1: General

IEC 60076-2, Power transformers – Part 2: Temperature rise

IEC 60076-5, Power transformers – Part 5: Ability to withstand short-circuit

IEC 60076-7, Power transformers – Part 7: Loading guide for oil-immersed power transformers

IEC 60076-16, Power transformers – Part 16: Transformers for wind turbine applications

IEC 60085, *Electrical insulation – Thermal evaluation and designation*

IEC 60137, Insulated bushings for alternating voltages above 1 000 V

IEC 60214-1, Tap-changers – Part 1: Performance requirements and test methods

IEC 60296, Fluids for electrotechnical applications – Unused mineral insulating oils for transformers and switchgear

IEC 60836, Specifications for unused silicone insulating liquids for electrotechnical purposes

This is a free preview. Purchase the entire publication at the link below:

Product Page

S Looking for additional Standards? Visit Intertek Inform Infostore

> Learn about LexConnect, All Jurisdictions, Standards referenced in Australian legislation