

Irish Standard I.S. EN ISO 2179:2016

Electroplated coatings of tin-nickel alloy -Specification and test methods (ISO 2179:1986)

 $\ensuremath{\mathbb C}$ CEN 2016 $\hfill No copying without NSAI permission except as permitted by copyright law.$

I.S. EN ISO 2179:2016

Incorporating amendments/corrigenda/National Annexes issued since publication:

The National Standards Authority of Ireland (NSAI) produces the following categories of formal documents:

I.S. xxx: Irish Standard – national specification based on the consensus of an expert panel and subject to public consultation.

S.R. xxx: Standard Recommendation — recommendation based on the consensus of an expert panel and subject to public consultation.

SWiFT xxx: A rapidly developed recommendatory document based on the consensus of the participants of an NSAI workshop.

This document replaces/revises/consolidates the NSAI adoption of the document(s) indicated on the CEN/CENELEC cover/Foreword and the following National document(s):

NOTE: The date of any NSAI previous adoption may not match the date of its original CEN/CENELEC document.

This document is based on: EN ISO 2179:2016 *Published:* 2016-04-20

This document was published under the authority of the NSAI and comes into effect on:

2016-05-08

ICS number:

25.220.40

NOTE: If blank see CEN/CENELEC cover page

NSAI	T +353 1 807 3800	Sales:
1 Swift Square,	F +353 1 807 3838	T +353 1 857 6730
Northwood, Santry	E standards@nsai.ie	F +353 1 857 6729
Dublin 9	W NSAI.ie	W standards.ie

Údarás um Chaighdeáin Náisiúnta na hÉireann

National Foreword

I.S. EN ISO 2179:2016 is the adopted Irish version of the European Document EN ISO 2179:2016, Electroplated coatings of tin-nickel alloy - Specification and test methods (ISO 2179:1986)

This document does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

Compliance with this document does not of itself confer immunity from legal obligations.

In line with international standards practice the decimal point is shown as a comma (,) throughout this document.

This is a free page sample. Access the full version online.

This page is intentionally left blank

EUROPEAN STANDARD NORME EUROPÉENNE

EN ISO 2179

EUROPÄISCHE NORM

April 2016

ICS 25.220.40

English Version

Electroplated coatings of tin-nickel alloy - Specification and test methods (ISO 2179:1986)

Dépôts électrolytiques d'alliage étain-nickel -Spécifications et méthodes d'essai (ISO 2179:1986) Elektrolytisch hergestellte Überzüge aus einer Zinn-Nickel-Legierung - Anforderungen und Prüfverfahren (ISO 2179:1986)

This European Standard was approved by CEN on 2 April 2016.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels

EN ISO 2179:2016 (E)

Contents	Page
European foreword	

European foreword

The text of ISO 2179:1986 has been prepared by Technical Committee ISO/TC 107 "Metallic and other inorganic coatings" of the International Organization for Standardization (ISO) and has been taken over as EN ISO 2179:2016 by Technical Committee CEN/TC 262 "Metallic and other inorganic coatings" the secretariat of which is held by BSI.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by October 2016, and conflicting national standards shall be withdrawn at the latest by October 2016.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.

According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

Endorsement notice

The text of ISO 2179:1986 has been approved by CEN as EN ISO 2179:2016 without any modification.

This is a free page sample. Access the full version online.

This page is intentionally left blank

International Standard

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION MEX CHAPODHAR OPTAHUSALUR TO CTAHDAPTUSALUMOORGANISATION INTERNATIONALE DE NORMALISATION

Electroplated coatings of tin-nickel alloy – Specification and test methods

Dépôts électrolytiques d'alliage étain-nickel - Spécifications et méthodes d'essai

Second edition - 1986-12-15

Ref. No. ISO 2179-1986 (E)

Descriptors : metal coatings, electrodeposited coatings, tin coatings, nickel coating, classifications, specifications, tests, determination, thickness.

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council. They are approved in accordance with ISO procedures requiring at least 75 % approval by the member bodies voting.

International Standard ISO 2179 was prepared by Technical Committee ISO/TC 107, *Metallic and other non-organic coatings.*

This second edition cancels and replaces the first edition (ISO 2179-1972), of which it constitutes a technical revision.

Users should note that all International Standards undergo revision from time to time and that any reference made herein to any other International Standard implies its latest edition, unless otherwise stated.

Electroplated coatings of tin-nickel alloy – Specification and test methods

0 Introduction

This International Standard specifies requirements for electroplated coatings of the intermetallic compound SnNi of the approximate composition 65 % (m/m) tin and 35 % (m/m) nickel. Such coatings are generally recognized as being hard, wear-resistant and corrosion resistant.

The coatings are intended for use on both ferrous and nonferrous basis metals and also on printed circuit boards. A classification scheme is included by which the nature of the basis metal and undercoat, if any, and the coating thickness can be defined.

Annex B gives additional information as guidance to the user.

It is essential that the purchaser should state the information itemized in 4.1 and, if appropriate, 4.2. Specifying ISO 2179 without this information is insufficient.

1 Scope and field of application

This International Standard specifies requirements for electroplated coatings of the intermetallic compound SnNi, with a composition of approximately 65 % (m/m) tin and 35 % (m/m) nickel.

It does not apply to

a) threaded components;

b) coatings on sheet, strip or wire in the unfabricated form, or on articles made from them;

c) coatings on coil springs;

d) electroplating of steels with tensile strength greater than 1 000 MPa¹⁾ (or of corresponding hardness), because such steels are subject to hydrogen embrittlement (see 8.2).

2 References

ISO 1462, Metallic coatings – Coatings other than those anodic to the basis metal – Accelerated corrosion tests – Method for the evaluation of the results.

ISO 1463, Metallic and oxide coatings — Measurement of coating thickness — Microscopical method.

ISO 2064, Metallic and other non-organic coatings — Definitions and conventions concerning the measurement of thickness.

ISO 2177, Metallic coatings – Measurement of coating thickness – Coulometric method by anodic dissolution.

ISO 2819, Metallic coatings on metallic substrates – Electrodeposited and chemically deposited coatings – Review of methods available for testing adhesion.

ISO 2859, Sampling procedures and tables for inspection by attributes.²⁾

ISO 3497, Metallic coatings – Measurements of coating thickness – X-ray spectrometric methods.

ISO 3543, Metallic and non-metallic coatings — Measurements of thickness — Beta backscatter method.

ISO 4519, Electrodeposited metallic coatings and related finishes – Sampling procedures for inspection by attributes.

ISO 6988, Metallic and other non-organic coatings – Sulfur dioxide test with general condensation of moisture.

3 Definition

significant surface: The part of the article covered or to be covered by the coating and for which the coating is essential for serviceability and/or appearance.

(Definition taken from ISO 2064.)

1) $1 \text{ MPa} = 1 \text{ N/mm}^2$

²⁾ At present at the stage of draft.

4 Information to be supplied by the purchaser to the electroplater

4.1 Essential information

The following information shall be supplied by the purchaser to the electroplater:

a) the number of this International Standard;

b) the nature of the basis material (see clause 5);

c) the service condition number (see 7.1) or the classification code of the coating required (see 7.2);

d) the significant surface of the article to be electroplated indicated, for example, by drawings or by the provision of suitably marked samples;

e) the sampling procedure to be adopted (see clause 6);

f) the positions where unavoidable contact marks and other defects are acceptable (see 10.1);

g) the method of adhesion testing to be used (see 10.3).

4.2 Additional information

The following additional information may be required and, if so, shall be specified by the purchaser:

- a) any heat treatment required (see clause 8);
- b) any requirements for porosity testing (see 10.4);
- c) any special requirements for undercoats (see clause 9);
- d) a sample showing the required finish (see 10.1);
- e) any special pretreatment required;

f) any special packaging requirements for plated components.

5 Basis material

This International Standard specifies no requirements for the condition, finish or surface roughness of the basis material prior to electroplating (see B.2.1).

6 Sampling

Sampling procedures are specified in ISO 2859 and ISO 4519.

The method of sampling and acceptance levels shall be agreed between purchaser and supplier.

7 Classification

7.1 Service condition number

The service condition number indicates the severity of the service conditions in accordance with the following scale:

4: exceptionally severe — for example service outdoors in severe corrosive conditions

3: severe — for example service outdoors in typical temperate conditions

2: moderate — for example service indoors with some condensation

1: mild - for example service indoors in dry atmospheres.

 ${\rm NOTE}$ - See 10.2, which gives guidance on the relation between service condition number and minimum thickness.

When specifying the service condition number or coating classification code, it should be noted that tin-nickel alloy is brittle and liable to damage by impact. See also annex B.

7.2 Coating classification code

The coating classification code shall consist of three parts, the first two of which shall be separated by an oblique stroke, as follows:

a/b c

where

a indicates the chemical symbol for the basis metal (or for the main constituent if an alloy);

b indicates the chemical symbol for the undercoat metal (or for the main constituent if an alloy) followed by a figure for its minimum thickness, in micrometres, and is omitted if no undercoat is required [see 4.2 c)];

c indicates the chemical symbol, SnNi, followed by a figure for its minimum coating thickness, in micrometres.

An example is

Fe/Cu 2,5 SnNi 10

which represents an iron or steel basis metal, with a 2,5 μm copper undercoat, tin-nickel electroplated to a thickness of 10 $\mu m.$

8 Heat treatment of steel

8.1 Stress relief before electroplating

Severely cold-worked steel parts shall be stress relieved before electroplating by heating for 1 h at 190 to 220 °C.

The properties of some steels which have been carburized, flame-hardened or induction-hardened and subsequently ground would be impaired by this treatment and shall instead be stress relieved at a lower temperature, for example at 130 to 150 °C for not less than 5 h.

8.2 Hydrogen embrittlement relief after electroplating

Because diffusion of hydrogen through tin-nickel coatings is very slow, heat treatment for hydrogen embrittlement relief after electroplating is impractical.

This is a free page sample. Access the full version online. I.S. EN ISO 2179:2016

9 Requirements for undercoats

Undercoats may be necessary on certain basis materials for the following reasons :

- a) to ensure adhesion (see B.2.2 and B.2.3);
- b) to imprové protection against corrosion.

Care should be taken to select an undercoat or undercoat system that will not confer undesirable properties such as embrittlement of the basis material or finished article. For example the use of highly stressed nickel should be avoided.

For use in service conditions 2, 3 or 4, an undercoat of copper, nickel, bronze or tin of minimum local thickness 8 μ m is essential on steel, iron and iron alloys, in addition to the specified coating thickness of tin-nickel alloy (see 10.2).

If undercoats are specified, their nature and minimum local thickness shall be specified by the purchaser (see clause B.2).

The thickness of the undercoat or undercoats shall be measured by the method specified in A.1.1.

10 Requirements for coatings

10.1 Appearance

When examined by the unaided eye or corrected vision the significant surfaces of the electroplated article shall be free from any visible defects such as blisters, pits, roughness, cracks or unelectroplated areas and shall not be stained or discoloured.

The acceptability and positions of unavoidable contact marks and defects on non-significant surfaces shall be specified by the purchaser.

If necessary, a sample showing the required finish shall be supplied or approved by the purchaser.

10.2 Thickness

Tin-nickel coatings are classified by thickness and for each service condition (see 7.1), minimum values are specified in the table (see also clause B.1).

Service condition	(Partial) classification	Minimum thickness
number	code	μm
4	SnNi 25	25
3	SnNi 15	15
2	SnNi 10	10
1	SnNi 5	5

Table - Coating thickness

NOTES

1 For certain engineering applications, tin-nickel is used solely for its wear-resistant properties and in such cases, where corrosion protection is of secondary importance, thinner coatings than those given in the table may be used (see clause B.1).

2 In very exceptional circumstances thicker coatings (for example 45 $\mu m)$ than those specified in the table may be required (see clause B.1).

The thickness of the coating shall be measured over a reference area (see ISO 2064) by the appropriate method given in annex A on any part of the significant surface that can be touched with a 20 mm diameter ball. In the case of articles having a significant surface area of 100 mm² or greater, the minimum thickness shall be regarded as the minimum value of local thickness. In the case of articles having a significant surface area of less than 100 mm², the minimum thickness shall be regarded as the minimum thickness.

In the case of printed circuit boards with electroplated-through holes, the requirements shall also apply to the surfaces within the holes, and not only to the areas that can be touched with a 20 mm diameter ball (see A.0.2.4).

In the case of dispute, the referee methods are given in A.0.2.

10.3 Adhesion

CAUTION — This test may have an adverse effect on the mechanical properties of the article tested. Accordingly, the thermal shock test piece shall not be used for other tests.

If specified by the purchaser, adhesion shall be tested by the thermal shock test method described in ISO 2819 using a heating period of 1 h. The specimen shall be deemed to have failed if there is evidence of the coating showing signs of detachment.

10.4 Porosity

If specified by the purchaser, coatings having a minimum thickness of 10 μ m or greater shall be subjected to the test specified in ISO 6988, and the results of the test shall be evaluated in accordance with ISO 1462 and a rating number obtained. The specimen shall be deemed to have failed if

a) the coating thickness is 25 μm or more and the rating number is less than 9;

b) the coating thickness is between 10 and 25 μ m and the rating number is less than that specified by the purchaser.

This is a free preview. Purchase the entire publication at the link below:

Product Page

S Looking for additional Standards? Visit Intertek Inform Infostore

> Learn about LexConnect, All Jurisdictions, Standards referenced in Australian legislation