Irish Standard I.S. EN 15430-1:2015 Winter and road service area maintenance equipment - Data acquisition and transmission - Part 1: In-vehicle data acquisition © CEN 2015 No copying without NSAI permission except as permitted by copyright law. #### I.S. EN 15430-1:2015 NSAI Incorporating amendments/corrigenda/National Annexes issued since publication: The National Standards Authority of Ireland (NSAI) produces the following categories of formal documents: I.S. xxx: Irish Standard — national specification based on the consensus of an expert panel and subject to public consultation. S.R.~xxx: Standard~Recommendation-recommendation~based~on~the~consensus~of~an~expert~panel~and~subject~to~public~consultation. SWiFT xxx: A rapidly developed recommendatory document based on the consensus of the participants of an NSAI workshop. This document replaces/revises/consolidates the NSAI adoption of the document(s) indicated on the CEN/CENELEC cover/Foreword and the following National document(s): NOTE: The date of any NSAI previous adoption may not match the date of its original CEN/CENELEC document. This document is based on: Published: EN 15430-1:2015 2015-08-05 This document was published ICS number: under the authority of the NSAI and comes into effect on: 35.240.60 43.160 2015-08-22 NOTE: If blank see CEN/CENELEC cover page T +353 1 807 3800 1 Swift Square, F+353 1 807 3838 T+353 1 857 6730 Northwood, Santry E standards@nsai.ie F+353 1 857 6729 Dublin 9 W NSALie W standards.ie Údarás um Chaighdeáin Náisiúnta na hÉireann Sales: **EUROPEAN STANDARD** NORME EUROPÉENNE EN 15430-1 **EUROPÄISCHE NORM** August 2015 ICS 35.240.60; 43.160 Supersedes EN 15430-1:2007+A1:2011 #### **English Version** # Winter and road service area maintenance equipments - Data acquisition and transmission - Part 1: In-vehicle data acquisition Matériels de viabilité hivernale et d'entretien des dépendances routières - Acquisition et transmission des données - Partie 1 : Acquisition des données véhiculaires Winterdienst- und Straßenbetriebsdienstausstattung -Datenerfassung und -übertragung - Teil 1: Datenerfassung im Fahrzeug This European Standard was approved by CEN on 28 May 2015. CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions. CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Świtzerland, Turkey and United Kingdom. EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels # Contents Page | Introduction | 6 | |--|----| | | | | Normative references | G | | 4 INDITIONING ICICICITUCS | | | 3 Terms and abbreviations | 6 | | 4 Communication between vehicle/equipment and board-computer | | | 4.1 General | 7 | | 4.2 Communication through RS232 | | | 4.2.1 RS232 interface on vehicle/equipment "Data transmission handler" | | | 4.2.2 RS232 interface on "Board-computer" | | | 4.2.3 Communication protocol | | | 5 Definitions of variables, records and report | | | 5.1 General | 12 | | 5.2 Data integrity check | 12 | | 5.3 Variable types | 13 | | 5.4 Recommended SLOTs for variable definitions | 15 | | 5.5 Definition of variables | 18 | | 5.5.1 General | 18 | | 5.5.2 General variables | | | 5.5.3 General geographic position system variables | 19 | | 5.5.4 General vehicle and route variables | | | 5.5.5 General road weather and road condition variables | | | 5.5.6 Plough/Broom variables | | | 5.5.7 Snow blower or cutter variables | | | 5.5.8 Spreader/sprayer variables | | | 5.5.9 Grass or branch cutting machine variables | | | 5.5.10 Sweeper variables | | | 5.5.11 Safety post cleaning machine variables | | | 5.5.12 Boat plants cutter variables | | | 5.6 Definition of records | | | 5.6.1 General | | | 5.6.2 Time synchronisation record (record code 0) | | | 5.6.3 Standard header record (record code 1) | | | 5.6.4 Standard footer record (record code 2) | | | 5.6.5 Trigger conditions for record code 3 and higher | | | 5.6.6 Geographic position data record (record code 3) | | | 5.6.7 Vehicle and route data record (record code 4) | | | 5.6.8 Weather and road condition data record (record code 5) | | | 5.6.9 Snowplough/broom data record (record code 6/7) | | | 5.6.10 Spreader/sprayer data record (record code 8) | | | 5.6.11 Snow blower/cutter data record (record code 9) | | | 5.6.12 Grass/branch cutter data record (record code 10) | | | 5.6.13 Sweeper data record (record code 11) | | | 5.6.14 Safety post cleaning machine data record (record code 12) | | | 5.6.15 Boat plants cutter data record (record code 13) | | | 5.6.16 Free definable data record (record code 10000 and higher) | | | 5.7 Report definition | 42 | | Bibliography | 43 | # **European foreword** This document (EN 15430-1:2015) has been prepared by Technical Committee CEN/TC 337 "Road operation equipment and products", the secretariat of which is held by AFNOR. This document supersedes EN 15430-1:2007+A1:2011. This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by February 2016, and conflicting national standards shall be withdrawn at the latest by February 2016. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights. The following changes haves been implemented in this new edition: - Modify variable no.127 in Table 12 by adding the sentence in bold: - Spreader mode (0=Idle or Transport, 1=Spreading or Spraying, 2=Unload Hopper, 3=Spreading and Spraying, 4 = Spreading, 5 = Spraying) - Modify variable no.137 in Table 12 by adding the following remark: NOTE For spraying and spreading (SprMode=3), the value applies to the brine percentage of the spreading dosage only. According to the CEN/CENELEC Internal Regulations, the national standards organisations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom. # Introduction This protocol is meant to be used for data acquisition in fleet management applications in the field of municipal vehicles. The purpose of the protocol is to define how data of a vehicle or equipment is generated, stored and transferred to a board-computer system in the vehicle and from the board-computer to the software application in the office (refer to Figure 1). On the equipment or vehicle the data is generated by a "Data generator". This data is stored, if present, into a buffer-memory. The "Data transmission handler" will send the data present in the buffer-memory to the "Board-computer" or "Data Acquisition System". The buffer-memory is there to ensure that data does not get lost in case there is no transmission possible. The size or type of the buffer is not defined in this proposal. If there is no buffer or the buffer is too small to store new data, data will get lost. To synchronise time-stamps of the vehicle/equipment with the Board-computer, a special record for time synchronisation is defined. In this part the data acquisition and communication from vehicle/equipment to the Board-computer is defined. Figure 1 — Architecture In general, the data is a semi-colon (";") separated ASCII text for separation of record codes and values of variables. CR+LF is used for separation of records (one record is one line of text). ## Examples of an on-board system configuration. (a) Spreader control box generates spreader and plough data, acquired by board computer; (b) Spreader control box generates spreader data, acquired by board computer; Board computer adds plough, GPS and driver data (c) Spreader control box generates spreader data, plough control box generates plough data, GPS box generates GPS data, acquired by board computer (d) Spreader control box generates spreader, plough, GPS, driver and vehicle data and sends this to the office through the data transmission unit (spreader control box is board computer) Figure 2 — Diagram of possible connections ## 1 Scope This European Standard specifies a standardized protocol for downloading data from the equipment control box to an in-vehicle board computer to ensure interchangeability between a vehicle and different equipment that the same vehicle can carry. It specifies the interface connection as well as variables, records and reports which permit standardized protocol to cover applications with the greatest possible variety of equipment for performing winter maintenance and road service area maintenance. ### 2 Normative references The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO/IEC 8859-1, Information technology — 8-bit single-byte coded graphic character sets — Part 1: Latin alphabet No. 1 NMEA 0183, Interface Standard TIA-232-F, Interface between data terminal equipment and data circuit-terminating equipment employing serial binary data interchange (RS232) SAE J1939/71, Recommended practice for serial control and communications vehicle network — Vehicle application layer ### 3 Abbreviations **ACK** | ACK | Acknowledge (ASCII control code ooh) | |----------------|---| | ASCII | American national Standard Code for Information Interchange | | Bps | Bits per second | | CRC-16 | Cyclic Redundancy Code with 16 bits | | CRC-32 | Cyclic Redundancy Code with 32 bits | | CR | Carriage Return (ASCII control code 0D _h) | | EOT | End Of Transmission (ASCII control code 04 _h) | | h | Number before h is in hexadecimal notation | | IEEE | Institute of Electrical and Electronics Engineers | | LF | Line Feed (ASCII control code 0A _h) | | NAK | Negative acknowledge (ASCII control code 15h) | | SOH | Start Of Header (ASCII control code 01 _h) | | TBD | To Be Defined | | ل _م | CR + LF (carriage return + line feed) | Acknowledge (ASCII control code 06.) | This is a free preview. Purchase the entire publication at the link below | |---| |---| **Product Page** - Dooking for additional Standards? Visit Intertek Inform Infostore - Dearn about LexConnect, All Jurisdictions, Standards referenced in Australian legislation