Irish Standard I.S. EN 60599:2016 Mineral oil-filled electrical equipment in service - Guidance on the interpretation of dissolved and free gases analysis © CENELEC 2016 No copying without NSAI permission except as permitted by copyright law. #### I.S. EN 60599:2016 Incorporating amendments/corrigenda/National Annexes issued since publication: The National Standards Authority of Ireland (NSAI) produces the following categories of formal documents: I.S. xxx: Irish Standard — national specification based on the consensus of an expert panel and subject to public consultation. S.R.~xxx: Standard~Recommendation-recommendation~based~on~the~consensus~of~an~expert~panel~and~subject~to~public~consultation. SWiFT xxx: A rapidly developed recommendatory document based on the consensus of the participants of an NSAI workshop. This document replaces/revises/consolidates the NSAI adoption of the document(s) indicated on the CEN/CENELEC cover/Foreword and the following National document(s): NOTE: The date of any NSAI previous adoption may not match the date of its original CEN/CENELEC document. This document is based on: Published: EN 60599:2016 2016-01-15 This document was published ICS number: under the authority of the NSAI and comes into effect on: 17.220.99 29.040.10 2016-02-02 29.180 NOTE: If blank see CEN/CENELEC cover page NSAI T +353 1 807 3800 Sales: 1 Swift Square, F +353 1 807 3838 T +353 1 857 6730 Northwood, Santry E standards@nsai.ie F +353 1 857 6729 Dublin 9 W NSAI.ie W standards.ie Údarás um Chaighdeáin Náisiúnta na hÉireann This is a free page sample. Access the full version online. #### **National Foreword** I.S. EN 60599:2016 is the adopted Irish version of the European Document EN 60599:2016, Mineral oil-filled electrical equipment in service - Guidance on the interpretation of dissolved and free gases analysis This document does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. Compliance with this document does not of itself confer immunity from legal obligations. In line with international standards practice the decimal point is shown as a comma (,) throughout this document. This is a free page sample. Access the full version online. This page is intentionally left blank This is a free page sample. Access the full version online. **I.S. EN 60599:2016** **EUROPEAN STANDARD** EN 60599 NORME EUROPÉENNE **EUROPÄISCHE NORM** January 2016 ICS 17.220.99; 29.040.10; 29.180 Supersedes EN 60599:1999 #### **English Version** ### Mineral oil-filled electrical equipment in service - Guidance on the interpretation of dissolved and free gases analysis (IEC 60599:2015) Matériels électriques remplis d'huile minérale en service -Lignes directrices pour l'interprétation de l'analyse des gaz dissous et des gaz libres (IEC 60599:2015) In Betrieb befindliche, mit Mineralöl befüllte elektrische Geräte - Leitfaden zur Interpretation der Analyse gelöster und freier Gase (IEC 60599:2015) This European Standard was approved by CENELEC on 2015-10-21. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions. CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom. European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels #### **European foreword** The text of document 10/967/FDIS, future edition 3 of IEC 60599, prepared by IEC/TC 10 "Fluids for electrotechnical applications" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN 60599:2016. The following dates are fixed: - latest date by which the document has to be implemented at national level by publication of an identical national standard or by endorsement - latest date by which the national standards conflicting with (dow) 2018-10-21 the document have to be withdrawn This document supersedes EN 60599:1999. EN 60599:2016 includes the following significant technical changes with respect to EN 60599:1999: - a) revision of 5.5, 6.1, 7, 8, 9, 10, A.2.6, A.3, A.7; - b) addition of new subclause 4.3; - c) expansion of the Bibliography; - d) revision of Figure 1; - e) addition of Figure B.4. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC [and/or CEN] shall not be held responsible for identifying any or all such patent rights. #### **Endorsement notice** The text of the International Standard IEC 60599:2015 was approved by CENELEC as a European Standard without any modification. EN 60599:2016 ### **Annex ZA** (normative) ## Normative references to international publications with their corresponding European publications The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. NOTE 1 When an International Publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies. NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available here: <a href="https://www.cenelec.eu">www.cenelec.eu</a>. | <u>Publication</u> | <u>Year</u> | <u>Title</u> | <u>EN/HD</u> | Year | |--------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------|------| | IEC 60050-191 | 1990 | International Electrotechnical<br>Vocabulary -<br>Chapter 191: Dependability and quality<br>of service | - | - | | IEC 60050-192 | 2015 | International electrotechnical<br>vocabulary -<br>Part 192: Dependability | - | - | | IEC 60050-212 | 2010 | International Electrotechnical<br>Vocabulary -<br>Part-212: Electrical insulating solids,<br>liquids and gases | - | - | | IEC 60050-604 | 1987 | International Electrotechnical<br>Vocabulary -<br>Chapter 604: Generation, transmission<br>and distribution of electricity - Operation | - | - | | IEC 60475 | - | Method of sampling insulating liquids | EN 60475 | - | | IEC 60567 | 2011 | Oil-filled electrical equipment - Sampling of gases and analysis of free and dissolved gases - Guidance | EN 60567 | 2011 | | IEC 61198 | - | Mineral insulating oils - Methods for the determination of 2-furfural and related compounds | EN 61198 | - | This is a free page sample. Access the full version online. This page is intentionally left blank IEC 60599 Edition 3.0 2015-09 # INTERNATIONAL STANDARD # NORME INTERNATIONALE Mineral oil-filled electrical equipment in service – Guidance on the interpretation of dissolved and free gases analysis Matériels électriques remplis d'huile minérale en service – Lignes directrices pour l'interprétation de l'analyse des gaz dissous et des gaz libres ### THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2015 IEC, Geneva, Switzerland All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information. Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence. IEC Central Office Tel.: +41 22 919 02 11 3, rue de Varembé Fax: +41 22 919 03 00 CH-1211 Geneva 20 info@iec.ch Switzerland www.iec.ch #### About the IEC The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies. #### About IEC publications The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigenda or an amendment might have been published. #### IEC Catalogue - webstore.iec.ch/catalogue The stand-alone application for consulting the entire bibliographical information on IEC International Standards, Technical Specifications, Technical Reports and other documents. Available for PC, Mac OS, Android Tablets and iPad #### IEC publications search - www.iec.ch/searchpub The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, replaced and withdrawn publications. ### IEC Just Published - webstore.iec.ch/justpublished Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and also once a month by email. #### Electropedia - www.electropedia.org The world's leading online dictionary of electronic and electrical terms containing more than 30 000 terms and definitions in English and French, with equivalent terms in 15 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online. #### IEC Glossary - std.iec.ch/glossary More than 60 000 electrotechnical terminology entries in English and French extracted from the Terms and Definitions clause of IEC publications issued since 2002. Some entries have been collected from earlier publications of IEC TC 37, 77, 86 and CISPR. #### IEC Customer Service Centre - webstore.iec.ch/csc If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: csc@iec.ch. #### A propos de l'IEC La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées. #### A propos des publications IEC Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l'édition la plus récente, un corrigendum ou amendement peut avoir été publié. #### Catalogue IEC - webstore.iec.ch/catalogue Application autonome pour consulter tous les renseignements bibliographiques sur les Normes internationales, Spécifications techniques, Rapports techniques et autres documents de l'IEC. Disponible pour PC, Mac OS, tablettes Android et iPad. #### Recherche de publications IEC - www.iec.ch/searchpub La recherche avancée permet de trouver des publications IEC en utilisant différents critères (numéro de référence, texte, comité d'études,...). Elle donne aussi des informations sur les projets et les publications remplacées ou retirées. #### IEC Just Published - webstore.iec.ch/justpublished Restez informé sur les nouvelles publications IEC. Just Published détaille les nouvelles publications parues. Disponible en ligne et aussi une fois par mois par email. #### Electropedia - www.electropedia.org Le premier dictionnaire en ligne de termes électroniques et électriques. Il contient plus de 30 000 termes et définitions en anglais et en français, ainsi que les termes équivalents dans 15 langues additionnelles. Egalement appelé Vocabulaire Electrotechnique International (IEV) en ligne. #### Glossaire IEC - std.iec.ch/glossary Plus de 60 000 entrées terminologiques électrotechniques, en anglais et en français, extraites des articles Termes et Définitions des publications IEC parues depuis 2002. Plus certaines entrées antérieures extraites des publications des CE 37, 77, 86 et CISPR de l'IEC. #### Service Clients - webstore.iec.ch/csc Si vous désirez nous donner des commentaires sur cette publication ou si vous avez des questions contactez-nous: csc@iec.ch. IEC 60599 Edition 3.0 2015-09 ## INTERNATIONAL STANDARD # NORME INTERNATIONALE Mineral oil-filled electrical equipment in service – Guidance on the interpretation of dissolved and free gases analysis Matériels électriques remplis d'huile minérale en service – Lignes directrices pour l'interprétation de l'analyse des gaz dissous et des gaz libres INTERNATIONAL ELECTROTECHNICAL COMMISSION COMMISSION ELECTROTECHNIQUE INTERNATIONALE ICS 17.220.99; 29.040.10; 29.180 ISBN 978-2-8322-2899-9 Warning! Make sure that you obtained this publication from an authorized distributor. Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé. ### - 2 - IEC 60599:2015 © IEC 2015 ### CONTENTS | FC | DREWO | RD | 5 | |----|---------|-----------------------------------------------------|----| | IN | TRODU | ICTION | 7 | | 1 | Scop | e | 8 | | 2 | Norm | native references | 8 | | 3 | | s, definitions and abbreviations | | | • | 3.1 | Terms and definitions | | | | 3.2 | Abbreviations | | | | 3.2.1 | | | | | 3.2.2 | | | | 4 | Mech | nanisms of gas formation | | | | 4.1 | Decomposition of oil | 11 | | | 4.2 | Decomposition of cellulosic insulation | | | | 4.3 | Stray gassing of oil | | | | 4.4 | Other sources of gas | | | 5 | Ident | ification of faults | | | | 5.1 | General | 13 | | | 5.2 | Dissolved gas compositions | 13 | | | 5.3 | Types of faults | 13 | | | 5.4 | Basic gas ratios | 14 | | | 5.5 | CO <sub>2</sub> /CO ratio | 15 | | | 5.6 | O <sub>2</sub> /N <sub>2</sub> ratio | 16 | | | 5.7 | C <sub>2</sub> H <sub>2</sub> /H <sub>2</sub> ratio | 16 | | | 5.8 | C <sub>3</sub> hydrocarbons | 16 | | | 5.9 | Evolution of faults | 16 | | | 5.10 | Graphical representations | 17 | | 6 | Cond | litions for calculating ratios | 17 | | | 6.1 | Examination of DGA values | 17 | | | 6.2 | Uncertainty on gas ratios | 17 | | 7 | Appli | cation to free gases in gas relays | 18 | | 8 | Gas | concentration levels in service | 19 | | | 8.1 | Probability of failure in service | 19 | | | 8.1.1 | General | 19 | | | 8.1.2 | Calculation methods | 20 | | | 8.2 | Typical concentration values | 20 | | | 8.2.1 | General | 20 | | | 8.2.2 | Calculation methods | 20 | | | 8.2.3 | Choice of normality percentages | 20 | | | 8.2.4 | Alarm concentration values | 21 | | | 8.3 | Rates of gas increase | | | 9 | Reco | mmended method of DGA interpretation (see Figure 1) | 21 | | 10 | Repo | ort of results | 22 | | Ar | nex A ( | (informative) Equipment application notes | 24 | | | A.1 | General warning | 24 | | | A.2 | Power transformers | | | | A.2.1 | Specific sub-types | 24 | | A.2.2 | i ypicai faults | 24 | |------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----| | A.2.3 | Identification of faults by DGA | 25 | | A.2.4 | Typical concentration values | 25 | | A.2.5 | Typical rates of gas increase | 26 | | A.2.6 | Specific information to be added to the DGA report (see Clause 10) | | | A.3 II | ndustrial and special transformers | | | A.3.1 | Specific sub-types | 27 | | A.3.2 | Typical faults | 27 | | A.3.3 | Identification of faults by DGA. | 27 | | A.3.4 | Typical concentration values | | | A.4 II | nstrument transformers | | | A.4.1 | Specific sub-types | 28 | | A.4.2 | Typical faults | | | A.4.3 | Identification of faults by DGA | 29 | | A.4.4 | Typical concentration values | | | A.5 E | Bushings | 30 | | A.5.1 | Specific sub-types | | | A.5.2 | Typical faults | | | A.5.3 | Identification of faults by DGA | | | A.5.4 | Typical concentration values | 31 | | A.6 C | Dil-filled cables | 31 | | A.6.1 | Typical faults | 31 | | A.6.2 | Identification of faults by DGA | 31 | | A.6.3 | Typical concentration values | | | A.7 S | Switching equipment | | | A.7.1 | Specific sub-types | 32 | | A.7.2 | Normal operation | 32 | | A.7.3 | Typical faults | | | A.7.4 | Identification of faults by DGA | 32 | | A.8 E | quipment filled with non-mineral fluids | | | | formative) Graphical representations of gas ratios (see 5.10) | | | • | y | | | Bibliograph | <b>,</b> | | | Fig | The control of co | 0.0 | | | Flow chart | | | _ | - Graphical representation 1 of gas ratios (see [3]) | | | Figure B.2 | - Graphical representation 2 of gas ratios | 35 | | Figure B.3 transformer | - Graphical representation 3 of gas ratios - Duval's triangle 1 for s, bushings and cables(see [4]) | 36 | | Figure B.4 | - Graphical representation 4 of gas ratios - Duval's triangle 2 for OLTCs | | | (see A.7.2) | | 37 | | | | | | Table 1 – D | GA interpretation table | 14 | | Table 2 – S | implified scheme of interpretation | 15 | | | estwald solubility coefficients for various gases in mineral insulating oils | | | | · Typical faults in power transformers | | | | | 20 | | | · Ranges of 90 % typical gas concentration values observed in power<br>s, in աl/l | 26 | | | VI III MULTINITITITITITITITITITITITITITITITITITIT | | - 4 - IEC 60599:2015 © IEC 2015 | Table A.3 – Ranges of 90 % typical rates of gas increase observed in power transformers (all types), in μl/l/year | 26 | |-------------------------------------------------------------------------------------------------------------------|----| | Table A.4 – Examples of 90 % typical concentration values observed on individual networks | 28 | | Table A.5 – Typical faults in instrument transformers | 29 | | Table A.6 – Ranges of 90 % typical concentration values observed in instrument transformers | 29 | | Table A.7 – Maximum admissible values for sealed instrument transformers | 30 | | Table A.8 – Typical faults in bushings | 30 | | Table A.9 – Simplified interpretation scheme for bushings | 31 | | Table A.10 – 95 % typical concentration values in bushings | 31 | | Table A.11 – Ranges of 95 % typical concentration values observed on cables | 32 | | Table A.12 – Typical faults in switching equipment | 32 | IEC 60599:2015 © IEC 2015 - 5 - #### INTERNATIONAL ELECTROTECHNICAL COMMISSION # MINERAL OIL-FILLED ELECTRICAL EQUIPMENT IN SERVICE – GUIDANCE ON THE INTERPRETATION OF DISSOLVED AND FREE GASES ANALYSIS #### **FOREWORD** - 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations. - 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees. - 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user. - 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter. - 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies. - 6) All users should ensure that they have the latest edition of this publication. - 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications. - 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication. - 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights. International Standard IEC 60599 has been prepared by IEC technical committee 10: Fluids for electrotechnical applications. This third edition cancels and replaces the second edition published in 1999 and Amendment 1:2007. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: - a) revision of 5.5, 6.1, 7, 8, 9, 10, A.2.6, A.3, A.7; - b) addition of new sub-clause 4.3; - c) expansion of the Bibliography; - d) revision of Figure 1; - e) addition of Figure B.4. **-6-** IEC 60599:2015 © IEC 2015 The text of this standard is based on the following documents: | FDIS | Report on voting | |-------------|------------------| | 10/967/FDIS | 10/973/RVD | Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table. This publication has been drafted in accordance with the ISO/IEC Directives, Part 2. The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be - · reconfirmed, - withdrawn, - replaced by a revised edition, or - amended. IEC 60599:2015 © IEC 2015 **-7-** #### INTRODUCTION Dissolved and free gas analysis (DGA) is one of the most widely used diagnostic tools for detecting and evaluating faults in electrical equipment filled with insulating liquid. However, interpretation of DGA results is often complex and should always be done with care, involving experienced insulation maintenance personnel. This International Standard gives information for facilitating this interpretation. The first edition, published in 1978, has served the industry well, but had its limitations, such as the absence of a diagnosis in some cases, the absence of concentration levels and the fact that it was based mainly on experience gained from power transformers. The second edition attempted to address some of these shortcomings. Interpretation schemes were based on observations made after inspection of a large number of faulty oil-filled equipment in service and concentrations levels deduced from analyses collected worldwide. IEC 60599:2015 © IEC 2015 # MINERAL OIL-FILLED ELECTRICAL EQUIPMENT IN SERVICE – GUIDANCE ON THE INTERPRETATION OF DISSOLVED AND FREE GASES ANALYSIS #### 1 Scope This International Standard describes how the concentrations of dissolved gases or free gases may be interpreted to diagnose the condition of oil-filled electrical equipment in service and suggest future action. This standard is applicable to electrical equipment filled with mineral insulating oil and insulated with cellulosic paper or pressboard-based solid insulation. Information about specific types of equipment such as transformers (power, instrument, industrial, railways, distribution), reactors, bushings, switchgear and oil-filled cables is given only as an indication in the application notes (see Annex A). This standard may be applied, but only with caution, to other liquid-solid insulating systems. In any case, the indications obtained should be viewed only as guidance and any resulting action should be undertaken only with proper engineering judgment. #### 2 Normative references The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. IEC 60050-191:1990, International Electrotechnical Vocabulary – Chapter 191: Dependability and quality of service (available at http://www.electropedia.org) IEC 60050-192:2015, International Electrotechnical Vocabulary – Part 192: Dependability (available at <a href="http://www.electropedia.org">http://www.electropedia.org</a>) IEC 60050-212:2010, International Electrotechnical Vocabulary – Part 212: Electrical insulating solids, liquids and gases (available at http://www.electropedia.org) IEC 60050-604:1987, International Electrotechnical Vocabulary – Chapter 604: Generation, transmission and distribution of electricity – Operation (available at <a href="http://www.electropedia.org">http://www.electropedia.org</a>) IEC 60475, Method of sampling insulating liquids IEC 60567:2011, Oil-filled electrical equipment – Sampling of gases and analysis of free and dissolved gases – Guidance IEC 61198, Mineral insulating oils – Methods for the determination of 2-furfural and related compounds - 8 - | The is a new provider i arenade and chare publication at the limit below | This is a free preview. | Purchase the | entire publication | at the link below: | |--------------------------------------------------------------------------|-------------------------|--------------|--------------------|--------------------| |--------------------------------------------------------------------------|-------------------------|--------------|--------------------|--------------------| **Product Page** - Dooking for additional Standards? Visit Intertek Inform Infostore - Dearn about LexConnect, All Jurisdictions, Standards referenced in Australian legislation